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Semantic Image Segmentation

Goal: assign a label ti ∈ Λ to each pixel of the image.
Problem: for an M × N image there are |Λ|MN possible labellings.
Which one is the best?
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Probabilistic Approach

Define a probabilistic model on the set of all possible labellings.

Let p(T |X ,W ) measure the probability of the labelling T given the
image X and the parameters of the model W .
The goal is to find the labelling T ∗ that maximizes p(T |X ,W ):

T ∗ = argmax
T

p(T |X ,W ).

This is called the maximum a posteriori (MAP) inference.
We will use Markov random fields (MRFs) to define the probabilistic
model p(T |X ,W ).
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Markov Random Fields

Define an undirected graph G with nodes corresponding to the pixels
of the image.

Define some positive functions Ψc(Tc ;X ,W ) (called MRF factors) on
the cliques of the graph G.
The model is then defined as follows:

p(T |X ,W ) =
1

Z (X ,W )

∏
c∈C

Ψc(Tc ;X ,W ),

where Z (X ,W ) is the normalization constant.
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Markov Random Fields cont’d

How to choose the graph G?

The structure of the graph defines relations between the pixels. E.g.,
adjacent pixels are likely to have the same label, so they are linked by
an edge. The graph G is usually grid-like. Two popular variants:

ti ti

How to choose the factors Ψc(Tc ;X ,W )?

Determine, how likely the labelling Tc for the clique c is. E.g., there
are two types of factors for the first graph:

unary factors Ψi(ti): how likely it is that the i-th pixel is labelled as ti ;
pairwise factors Ψij(ti , tj): how likely it is that the i-th and j-th pixels
are simultaneously labelled as ti and tj .

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 5 / 20



Markov Random Fields cont’d

How to choose the graph G?
The structure of the graph defines relations between the pixels. E.g.,
adjacent pixels are likely to have the same label, so they are linked by
an edge. The graph G is usually grid-like. Two popular variants:

ti ti

How to choose the factors Ψc(Tc ;X ,W )?

Determine, how likely the labelling Tc for the clique c is. E.g., there
are two types of factors for the first graph:

unary factors Ψi(ti): how likely it is that the i-th pixel is labelled as ti ;
pairwise factors Ψij(ti , tj): how likely it is that the i-th and j-th pixels
are simultaneously labelled as ti and tj .

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 5 / 20



Markov Random Fields cont’d

How to choose the graph G?
The structure of the graph defines relations between the pixels. E.g.,
adjacent pixels are likely to have the same label, so they are linked by
an edge. The graph G is usually grid-like. Two popular variants:

ti ti

How to choose the factors Ψc(Tc ;X ,W )?
Determine, how likely the labelling Tc for the clique c is. E.g., there
are two types of factors for the first graph:

unary factors Ψi(ti): how likely it is that the i-th pixel is labelled as ti ;
pairwise factors Ψij(ti , tj): how likely it is that the i-th and j-th pixels
are simultaneously labelled as ti and tj .

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 5 / 20



Markov Random Fields cont’d

How to choose the graph G?
The structure of the graph defines relations between the pixels. E.g.,
adjacent pixels are likely to have the same label, so they are linked by
an edge. The graph G is usually grid-like. Two popular variants:

ti ti

How to choose the factors Ψc(Tc ;X ,W )?
Determine, how likely the labelling Tc for the clique c is. E.g., there
are two types of factors for the first graph:

unary factors Ψi(ti): how likely it is that the i-th pixel is labelled as ti ;

pairwise factors Ψij(ti , tj): how likely it is that the i-th and j-th pixels
are simultaneously labelled as ti and tj .

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 5 / 20



Markov Random Fields cont’d

How to choose the graph G?
The structure of the graph defines relations between the pixels. E.g.,
adjacent pixels are likely to have the same label, so they are linked by
an edge. The graph G is usually grid-like. Two popular variants:

ti ti

How to choose the factors Ψc(Tc ;X ,W )?
Determine, how likely the labelling Tc for the clique c is. E.g., there
are two types of factors for the first graph:

unary factors Ψi(ti): how likely it is that the i-th pixel is labelled as ti ;
pairwise factors Ψij(ti , tj): how likely it is that the i-th and j-th pixels
are simultaneously labelled as ti and tj .

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 5 / 20



MAP-Inference

The MAP-inference problem now corresponds to the following problem:

max
T

p(T |X ,W ) = max
T

1
Z (X ,W )

∏
c∈C

Ψc(Tc ;X ,W ).

Further we demonstrate how one can address such a problem using
the Tensor-Train (TT) framework.

We will assume that
the parameters of the model W are already chosen (how to choose
them will be touched on in the next talk);

we are performing the MAP-inference for the concrete image X .
So, to simplify notation, we won’t explicitly write X ,W any more:

max
T

p(T ) = max
T

1
Z

∏
c∈C

Ψc(Tc)
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Tensor-Train Framework

An n-dimensional tensor A is said to be represented in the TT-format
if its elements can be expressed as the following matrix product:

A(x1, . . . , xn) = G1[x1]︸ ︷︷ ︸
r0× r1

G2[x2]︸ ︷︷ ︸
r1× r2

. . . Gn[xn]︸ ︷︷ ︸
rn−1× rn

.

The matrices Gi [xi ] are called the TT-cores and their sizes
(numbers ri) are referred to as the TT-ranks.
The TT-format is very efficient provided that the TT-ranks are small.
Two algorithms for converting a tensor into the TT-format:

TT-SVD: finds an exact TT-representation for a tensor but suitable
only for low dimensionality n.
AMEn: builds a TT-approximation of a tensor by using only a small
fraction of its elements; suitable for high dimensionality n but doesn’t
have strong theoretical guarantees.
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Problem Formulation & Notation

Suppose that:
the MRF contains n variables denoted by x1, . . . , xn;

each variable xi takes values from the domain {1, . . . , d};
all the potentials are numbered from 1 to m.

Denote:
x = (x1, . . . , xn) — vector of all variables;

Ψ`(x
`) — `-th factor;

x` — vector of variables on which the `-th factor depends.

The main problem of our interest is the MAP-inference problem:

max
x
P (x) = max

x

1
Z

m∏
`=1
Ψ`(x

`).
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MAP-Inference & Energy Minimization

The MAP-inference problem

max
x
P (x) = max

x

1
Z

m∏
`=1
Ψ`(x

`)

is equivalent to the following problem:

min
x

m∑
`=1

[− lnΨ`(x
`)].

Terminology:
The terms Θ`(x

`) = − lnΨ`(x
`) are called MRF potentials.

Their sum E(x) =
m∑

`=1
Θ`(x

`) is called MRF energy.

So, the MAP-inference is equivalent to energy minimization:

min
x
E(x) = min

x

m∑
`=1
Θ`(x

`).
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Tensor Approach

The energy E(x) can be considered as an n-dimensional tensor:
E(x) = E(x1, . . . , xn).

Then energy minimization corresponds to finding the minimal element
in the tensor E(x).
If the energy E(x) were represented in the TT-format, we could use a
special algorithm from the TT-framework to find the minimal element.
How to convert the energy tensor into the TT-format?
AMEn-algorithm?

Possible, but there is also a much better way!
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The Idea of the Algorithm

Let’s try to take into account the structure of the energy tensor E.
Recall: E(x) =

m∑
`=1
Θ`(x

`).

Each potential Θ`(x
`) can be considered as an n-dimensional

tensor Θ`(x) if we add inessential variables x \ x` for non-existing
dimensions: Θ`(x) ≡ Θ`(x

`).
The energy E(x) can be expressed as a sum of the tensors Θ`(x):

E(x) =
m∑

`=1
Θ`(x).

If the tensors Θ` were represented in the TT-format, we could exploit
the summation operation on tensors in the TT-format to build the
TT-representation for the tensor E.
How to find the TT-decomposition for each tensor Θ`?
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Converting Potentials into the TT-Format

As opposed to the energy E(x), each potential Θ`(x
`) depends only

on part of the all variables and is usually of low dimensionality.

To compute the TT-decomposition of the tensor Θ`(x
`), we can use

the TT-SVD algorithm.
All that remains is to add the inessential variables x \ x` to Θ`(x

`)
so as to make it n-dimensional.
These inessential variables can be added constructively:

Let x = (x1, x2, x3, x4, x5), x` = (x1, x2, x4).
Suppose that after TT-SVD we have:

Θ`(x1, x2, x4) = G1[x1]G2[x2]G4[x4].

To introduce x3, x5, we need to define the missing cores G3[x3], G5[x5].
Define them as identity matrices:

Θ`(x1, x2, x3, x4, x5) = G1[x1]G2[x2] I︸︷︷︸
≡G3[x3]

G4[x4] I︸︷︷︸
≡G5[x5]

.

The maximal TT-rank hasn’t increased!
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The Algorithm & Its Theoretical Guarantees

1 Compute the TT-decomposition for each individual potential Θ`(x
`).

2 Add the inessential variables to each Θ`(x
`) to obtain Θ`(x).

3 Use the TT-summation to build E(x): E(x) =
∑m

`=1Θ`(x).

Theorem
The maximal TT-rank of the tensor E constructed by the algorithm is
polynomially bounded:

r(E) ≤ d
p
2 m,

where
d is the number of values that each variable can take;
m is the total number of potentials;
p is the maximal order of a potential (i.e. the maximal |x`|).

Consider d = 2, p = 2. Then r(E) ≤ 2m (linear dependence on m).
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High Order Potentials

Sometimes it is convenient to use potentials of high order, i.e. those
which depend on many variables.

E.g., the potential

Θ`(x) =

[ n∑
i=1

xi ≤ a
]

︸ ︷︷ ︸
indicator function

,

which depends on all the variables, could be used to specify some
preference on the minimal value of the area of foreground in the
problem of segmenting an image into background/foreground.
We can’t use the TT-SVD algorithm any more to convert such
potentials into the TT-format!
However, for some of these potentials we can explicitly construct the
TT-representation, i.e. we can derive analytical formulas for the
corresponding TT-cores.
Such TT-representations will be of low TT-rank!
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Sparse Potential

Consider a so-called sparse potential:
Θ`(xi1 , . . . , xiw ) = [xi1 = β1] . . . [xiw = βw ].

It always equals zero with the exception of only one configuration.

Such a potential admits a TT-representation
Θ`(xi1 , . . . , xiw ) = Gi1 [xi1 ] . . .Giw [xiw ]

with the following TT-cores:
Giv [xiv ] = [xiv = βv ], v = 1, . . . ,w .

In this case each TT-core is simply a number (1-by-1 matrix) for
every concrete value of xiv . Hence, the maximal TT-rank equals 1.
A more general sparse potential which differs from zero on s > 1
configurations can be obtained as a sum of several potentials of the
above type. Thus, the TT-rank of a general sparse potential is
bounded above by s.
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configurations can be obtained as a sum of several potentials of the
above type. Thus, the TT-rank of a general sparse potential is
bounded above by s.
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Area Potential

Consider the potential

Θ`(x) =

[ n∑
i=1

xi ≤ a
]
,

where xi ∈ {0, 1} and a ∈ Z+.

This potential can be analytically represented in the TT-format with
the maximal TT-rank equal to a + 1:

Gi [xi ] = (Sa)
xi , (i = 2, . . . , n − 1),

G1[x1] = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1], Gn[xn] = (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T ,

where Sa =

[
O Ia
O O

]
︸ ︷︷ ︸
(a+1)×(a+1)

.
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Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].
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1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Consider, e.g., that a = 3. In this case

Sa =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

[1 1 1 1]Sa = [0 1 1 1] (the sum of all rows);
[0 1 1 1]Sa = [0 0 1 1] (the sum of rows 2, 3, 4);
and so on.
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Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]
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a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T =

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Then
Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T =

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Then
Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T =

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Then
Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T

=

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Then
Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T =

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Area Potential cont’d

Key property of Sa: [
a+1︷ ︸︸ ︷

0 . . . 0︸ ︷︷ ︸
k

1 . . . 1]Sa = [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

k+1

1 . . . 1].

Then
Θ`(x) = G1[x1]G2[x2]G3[x3] . . .Gn[xn]

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1

1 . . . 1](Sa)
x2(Sa)

x3 . . . (Sa)
xn [0 . . . 0︸ ︷︷ ︸

a
1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
x1+x2

1 . . . 1](Sa)
x3 . . . (Sa)

xn [0 . . . 0︸ ︷︷ ︸
a

1]T

= [

a+1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

x1+...+xn

1 . . . 1][0 . . . 0︸ ︷︷ ︸
a

1]T =

1,
n∑

i=1
xi ≤ a,

0, otherwise.

A. Rodomanov et al. MRF Energy in the TT-Format SIAM-IS14, May 2014 17 / 20



Experiments
The TT-method for the MAP-inference:

1 Convert the energy into the TT-format;
2 Find the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several
real-world image segmentation problems from the OpenGM database.

Problem Variables Labels TRW-S TT Time (sec)

gm6 320 3 45.03 43.11 637
gm29 212 3 56.81 56.21 224
gm66 198 3 75.19 74.92 172
gm105 237 3 67.81 67.71 230
gm32 100 7 150.50 289.29 257
gm70 122 7 121.78 163.60 399
gm85 143 7 168.30 228.40 1 912
gm192 99 7 114.51 174.78 180
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Future Work

Optimized implementation of the proposed method.

Analytical formulas of TT-representations for other types of high
order potentials.
Better algorithm for finding the minimal element in a tensor
represented in the TT-format.
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Conclusion

We have proposed an algorithm that converts MRF energy into the
TT-format exactly.
We have derived an upper bound on the TT-ranks of the energy
tensor constructed by the proposed algorithm.
We have demonstrated how the obtained TT-representation of MRF
energy can be used for solving the important problem of the
MAP-inference arising in probabilistic graphical models.
To improve the method, we need a better algorithm for finding the
minimal element in a tensor represented in the TT-format.

Thank you!
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