PROBABILISTIC GRAPHICAL MODELS: A TENSORIAL PERSPECTIVE

Anton Rodomanov ${ }^{1}$ Alexander Novikov ${ }^{2}$ Anton Osokin ${ }^{3}$ Dmitry Vetrov ${ }^{2,4}$

${ }^{1}$ Moscow State University, Russia $\quad{ }^{2}$ Skolkovo Institute of Science and Technology, Russia
${ }^{3}$ SIERRA, INRIA, France ${ }^{4}$ Higher School of Economics, Russia

Bayesian methods research group (http://bayesgroup.ru)

MMMA, August 2015

MOTIVATIONAL EXAMPLE: IMAGE SEGMENTATION

- Task: assign a label y_{i} to each pixel of an $M \times N$ image.
- Let $P(\mathbf{y})$ be the joint probability of labelling \mathbf{y}.
- Two extreme cases:
- No assumptions about independence:
- $O\left(K^{M N}\right)$ parameters ($K=$ total number of labels)
- represents every distribution
- intractable in general
- Everything is independent: $P(\mathbf{y})=p_{1}\left(y_{1}\right) \ldots p_{M N}\left(y_{M N}\right)$
- $O(M N K)$ parameters
- represents only a small class of distributions
- tractable

Graphical models

- Provide a convenient way to define probabilistic models using graphs.
- Two types: directed graphical models and Markov random fields.
- We will consider only (discrete) Markov random fields.
- The edges represent dependencies between the variables.
- E.g., for image segmentation:

A variable y_{i} is independent of the rest given its immediate neighbours.

MARKOV RANDOM FIELDS

- The model:

$$
P(\mathbf{y})=\frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_{c}\left(\mathbf{y}_{c}\right)
$$

- Z: normalisation constant
- \mathcal{C} : set of all (maximal) cliques in the graph
- Ψ_{c} : non-negative functions which are called factors
- Example:

$$
\begin{aligned}
P\left(y_{1}, y_{2}, y_{3}, y_{4}\right)= & \frac{1}{Z}
\end{aligned} \Psi_{1}\left(y_{1}\right) \Psi_{2}\left(y_{2}\right) \Psi_{3}\left(y_{3}\right) \Psi_{4}\left(y_{4}\right), ~ \begin{aligned}
& \\
& \times \Psi_{12}\left(y_{1}, y_{2}\right) \Psi_{24}\left(y_{2}, y_{4}\right) \Psi_{34}\left(y_{3}, y_{4}\right) \Psi_{13}\left(y_{1}, y_{3}\right)
\end{aligned}
$$

The factors $\Psi_{i j}$ measure 'compatibility' between variables y_{i} and y_{j}.

Main problems of interest

Probabilistic model:

$$
P(\mathbf{y})=\frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_{c}\left(\mathbf{y}_{c}\right)=\frac{1}{Z} \exp (-E(\mathbf{y}))
$$

where E is the energy function:

$$
E(\mathbf{y})=\sum_{c \in \mathcal{C}} \Theta_{c}\left(\mathbf{y}_{c}\right), \quad \Theta_{c}\left(\mathbf{y}_{c}\right)=-\ln \Psi_{c}\left(\mathbf{y}_{c}\right)
$$

- Maximum a posteriori (MAP) inference:

$$
\mathbf{y}^{*}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{y})=\underset{\mathbf{y}}{\operatorname{argmin}} E(\mathbf{y})
$$

- Estimation of the normalisation constant:

$$
Z=\sum_{\mathbf{y}} P(\mathbf{y})
$$

- Estimation of the marginal distributions:

$$
P\left(y_{i}\right)=\sum_{\mathbf{y} \backslash y_{i}} P(\mathbf{y})
$$

Tensorial perspective

- Energy and unnormalised probability are tensors:

$$
\left.\begin{array}{l}
\mathbf{E}\left(y_{1}, \ldots, y_{n}\right)=\sum_{c=1}^{m} \boldsymbol{\Theta}_{c}\left(\mathbf{y}_{c}\right), \\
\widehat{\mathbf{P}}\left(y_{1}, \ldots, y_{n}\right)=\prod_{c=1}^{m} \mathbf{\Psi}_{c}\left(\mathbf{y}_{c}\right),
\end{array}\right\}
$$

where $y_{i} \in\{1, \ldots, d\}$.

- In this language:
- MAP-inference \Longleftrightarrow minimal element in \boldsymbol{E}
- Normalisation constant \Longleftrightarrow sum of all the elements of $\widehat{\boldsymbol{P}}$

TT-FORMAT

- TT-format for a tensor \boldsymbol{A} :

$$
A\left(y_{1}, \ldots, y_{n}\right)=\underbrace{G_{1}\left[y_{1}\right]}_{1 \times r_{1}} \underbrace{G_{2}\left[y_{2}\right]}_{r_{1} \times r_{2}} \ldots \underbrace{G_{n}\left[y_{n}\right]}_{r_{n-1} \times 1}
$$

- Terminology:
- G_{i} : TT-cores
- r_{i} : TT-ranks
- $r=\max r_{i}$: maximal TT-rank
- TT-format uses $O\left(n d r^{2}\right)$ memory to store $O\left(d^{n}\right)$ elements.
- Efficient only if the ranks are small.

TT-FORMAT: EFFICIENT OPERATIONS AND ADVANTAGES

Operation Output rank

$$
\begin{array}{ll}
\mathbf{C}=\mathbf{A}+\mathbf{B} & r(\mathbf{A})+r(\mathbf{B}) \\
\mathbf{C}=\mathbf{A} \odot \mathbf{B} & r(\mathbf{A}) r(\mathbf{B}) \\
\operatorname{sum} \mathbf{A} & - \\
\min \mathbf{A} & -
\end{array}
$$

TT-APPROACH FOR MARKOV RaNDOM FIELDS

MAP-inference $\Longleftrightarrow \quad$ minimal element in E

Normalisation constant \Longleftrightarrow sum of all elements of $\widehat{\boldsymbol{P}}$

Both operations are provided by the TT-format.
Let's convert \boldsymbol{E} and $\widehat{\boldsymbol{P}}$ to the TT-format.

Finding a TT-representation of an MRF

- TT-SVD (Oseledets, 2011): exact algorithm but only for small tensors No, MRF tensor is too big.
- AMEn-cross (Oseledets \& Tyrtyshnikov, 2010): approximate algorithm; uses only a small fraction of the tensor's elements
Possible, but there is a better way!

Converting the energy to the TT-format

$$
\mathbf{E}(\mathbf{y})=\sum_{c=1}^{m} \boldsymbol{\Theta}_{c}\left(\mathbf{y}_{c}\right)
$$

- Each $\Theta_{c}\left(\mathbf{y}_{c}\right)$ depends only on part of the all variables and is usually of low dimensionality \Rightarrow can be converted to the TT-format using TT-SVD.
- Use the summation operation to build the TT-representation for \mathbf{E}.
- To do this, we need to add inessential variables $\mathbf{y} \backslash \mathbf{y}_{c}$ to every potential: $\boldsymbol{\Theta}_{c}(\mathbf{y}) \equiv \boldsymbol{\Theta}_{c}\left(\mathbf{y}_{c}\right)$.
- The same for the probability tensor, but use the Hadamard product.

AdDING INESSENTIAL VARIABLES

- Let $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right), \mathbf{y}_{c}=\left(y_{1}, y_{2}, y_{4}\right)$.
- We already have the TT-format for $\Theta_{c}\left(\mathbf{y}_{c}\right)$:

$$
\boldsymbol{\Theta}_{c}\left(y_{1}, y_{2}, y_{4}\right)=G_{1}\left[y_{1}\right] G_{2}\left[y_{2}\right] G_{4}\left[y_{4}\right]
$$

- To introduce y_{3} and y_{5}, define the missing cores as identity matrices:

$$
\boldsymbol{\Theta}_{c}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)=G_{1}\left[y_{1}\right] G_{2}\left[y_{2}\right] \underbrace{I}_{\equiv G_{3}\left[y_{3}\right]} G_{4}\left[y_{4}\right] \underbrace{I}_{\equiv G_{5}\left[y_{5}\right]} .
$$

- The maximal TT-rank does not increase!

The resulting algorithm

(1) Compute the TT-decomposition for each individual potential $\Theta_{c}\left(\mathbf{y}_{c}\right)$.
(2) Add the inessential variables: $\boldsymbol{\Theta}_{c}\left(\mathbf{y}_{c}\right) \Rightarrow \boldsymbol{\Theta}_{c}(\mathbf{y})$.
(3) Use the TT-summation to build $\mathbf{E}(\mathbf{y}): \mathbf{E}(\mathbf{y})=\sum_{c=1}^{m} \mathbf{\Theta}_{c}(\mathbf{y})$.

Theorem

The maximal TT-rank of the tensor \mathbf{E} is polynomially bounded:

$$
r(\mathbf{E}) \leq d^{\frac{p}{2}} m,
$$

where

- $d=$ number of values that each variable can take;
- $m=$ total number of potentials;
- $p=$ maximal order of a potential (i.e. the maximal $\left|\mathbf{y}_{c}\right|$).

Consider $p=2$. Then $r(\mathbf{E}) \leq d m$ (linear dependence on m).

TT-rounding

TT-rounding procedure: $\tilde{\mathbf{A}}=\operatorname{round}(\mathbf{A}, \varepsilon)$:
(1) reduces TT-ranks
(2) tensors are close ($\varepsilon=$ accuracy $)$

The TT-format for the probability

- We could find the TT-representation of $\widehat{\mathbf{P}}$ analogously:

$$
\widehat{\mathbf{P}}=\bigodot_{c=1}^{m} \boldsymbol{\Psi}_{c} .
$$

- However, the TT-ranks of $\widehat{\mathbf{P}}$ are exponential:

- We need to compute Z without explicitly building the TT for $\widehat{\mathbf{P}}$.

NORMALISATION CONSTANT ESTIMATION

- Kronecker product property: $a b=a \otimes b, \quad a, b \in \mathbb{R}$.
- Mixed product property: $A C \otimes B D=(A \otimes B)(C \otimes D)$.
- Then

$$
\begin{aligned}
\widehat{\mathbf{P}}(\mathbf{y}) & =\prod_{c=1}^{m} \mathbf{\Psi}_{c}(\mathbf{y}) \\
& =\bigotimes_{c=1}^{m} \mathbf{\Psi}_{c}(\mathbf{y})=\bigotimes_{c=1}^{m}\left(G_{1}^{c}\left[y_{1}\right] \cdots G_{n}^{c}\left[y_{n}\right]\right) \\
& =\left(G_{1}^{1}\left[y_{1}\right] \otimes \cdots \otimes G_{1}^{m}\left[y_{1}\right]\right) \cdots\left(G_{n}^{1}\left[y_{n}\right] \otimes \cdots \otimes G_{n}^{m}\left[y_{n}\right]\right)
\end{aligned}
$$

- Denote $A_{i}\left[y_{i}\right]=G_{i}^{1}\left[y_{i}\right] \otimes \cdots \otimes G_{i}^{m}\left[y_{i}\right]$ (this is a huge matrix).
- Then

$$
\begin{aligned}
Z & =\sum_{\mathbf{y}} \widehat{\mathbf{P}}(\mathbf{y})=\sum_{y_{1}, \ldots, y_{n}} A_{1}\left[y_{1}\right] \ldots A_{n}\left[y_{n}\right] \\
& =\underbrace{\left(\sum_{y_{1}} A_{1}\left[y_{1}\right]\right)}_{B_{1}} \cdots \underbrace{\left(\sum_{y_{n}} A_{n}\left[y_{n}\right]\right)}_{B_{n}}=B_{1} \cdots B_{n} .
\end{aligned}
$$

The algorithm

- We have obtained the following expression:

$$
Z=B_{1} \ldots B_{n}
$$

- Each matrix B_{i} is huge but can be exactly represented in the TT-format.
- The algorithm:
(ㅅ) $\mathbf{f}_{1}:=B_{1}$
(2) $\mathbf{f}_{2}:=\operatorname{round}\left(\mathbf{f}_{1} B_{2}, \varepsilon\right)$
(3) $\mathbf{f}_{3}:=\operatorname{round}\left(\mathbf{f}_{2} B_{3}, \varepsilon\right)$
(9) ...
(3) $\mathbf{f}_{n}:=\operatorname{round}\left(\mathbf{f}_{n-1} B_{n}, \varepsilon\right)$
(c) $\widetilde{Z}:=\mathbf{f}_{n}$;
- This approach can be generalized to marginal distributions as well:

$$
\widehat{\mathbf{P}}_{i}\left(y_{i}\right)=B_{1} \ldots B_{i-1} A_{i}\left[y_{i}\right] B_{i+1} \ldots B_{n}
$$

Experiments: MAP-inference

The TT-method for the MAP-inference:
(3) Convert the energy to the TT-format;
(2) Find the minimal element in this tensor.

We compare this method with the popular TRW-S algorithm on several real-world image segmentation problems from the OpenGM database.

Problem	Variables	Labels	TRW-S	TT	Time (sec)
gm6	320	3	45.03	43.11	637
gm29	212	3	56.81	56.21	224
gm66	198	3	75.19	74.92	172
gm105	237	3	67.81	67.71	230
gm32	100	7	150.50	289.29	257
gm70	122	7	121.78	163.60	399
gm85	143	7	168.30	228.40	1912
gm192	99	7	114.51	174.78	180

EXPERIMENTS: NORMALISATION CONSTANT SET-UP

- Spin glass model:

$$
\widehat{\mathbf{P}}(\mathbf{y})=\prod_{i=1}^{n} \exp \left(-\frac{1}{T} h_{i} y_{i}\right) \prod_{(i, j) \in \mathcal{E}} \exp \left(-\frac{1}{T} c_{i j} y_{i} y_{j}\right)
$$

where $y_{i} \in\{-1,1\}$.

- Terminology:
- T : temperature
- h_{i} : unary coefficients
- $c_{i j}$: pairwise coefficients

- Compare against methods from the LibDAI library ([?]).

EXPERIMENTS: NORMALISATION CONSTANT

\square TT
\mp MCMC - AIS
\rightarrow TREEEP minka04treeep
\rightarrow MF
\rightarrow BP

Comparison on the Ising model (all pairwise weights are equal $c_{i j}=1$).

Experiments: WISH

—— TT
—— WISH ermon13wish

- BP
\rightarrow MF
\rightarrow TREEEP

Comparison on the data from the WISH paper, $T=1, c_{i j} \sim U[-f, f]$.

EXPERIMENTS: MARGINAL DISTRIBUTIONS

Spin glass models, $T=1, c_{i j} \sim U[-f, f]$.

Conclusions

- TT-format is very effective for the energy tensor. We have a good method for finding its TT-representation.
- However, TT-format is not suitable for the probability tensor.
- We have proposed an algorithm which estimates the normalisation constant without building the probability tensor.
- This algorithm is much more accurate than other state-of-the-art methods.

