PROBABILISTIC GRAPHICAL MODELS: A TENSORIAL PERSPECTIVE

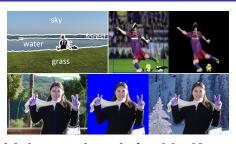
 $\begin{array}{ccc} {\rm Anton~Rodomanov}^1 & {\rm Alexander~Novikov}^2 & {\rm Anton~Osokin}^3 \\ & {\rm Dmitry~Vetrov}^{2,4} \end{array}$

 $^1{\rm Moscow}$ State University, Russia $^2{\rm Skolkovo}$ Institute of Science and Technology, Russia $^3{\rm SIERRA},$ INRIA, France $^4{\rm Higher}$ School of Economics, Russia

Bayesian methods research group (http://bayesgroup.ru)

MMMA, August 2015

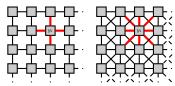
MOTIVATIONAL EXAMPLE: IMAGE SEGMENTATION



- Task: assign a label y_i to each pixel of an $M \times N$ image.
- Let P(y) be the joint probability of labelling y.
- Two extreme cases:
 - No assumptions about independence:
 - $O(K^{MN})$ parameters (K = total number of labels)
 - represents every distribution
 - intractable in general
 - Everything is independent: $P(y) = p_1(y_1) \dots p_{MN}(y_{MN})$
 - \bullet O(MNK) parameters
 - represents only a small class of distributions
 - tractable

GRAPHICAL MODELS

- Provide a convenient way to define probabilistic models using graphs.
- Two types: directed graphical models and Markov random fields.
- We will consider only (discrete) Markov random fields.
- The edges represent dependencies between the variables.
- E.g., for image segmentation:



A variable y_i is independent of the rest given its immediate neighbours.

Markov random fields

• The model:

$$P(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{y}_c),$$

- Z: normalisation constant
- C: set of all (maximal) cliques in the graph
- Ψ_c : non-negative functions which are called factors
- Example:

$$P(y_1, y_2, y_3, y_4) = \frac{1}{Z} \Psi_1(y_1) \Psi_2(y_2) \Psi_3(y_3) \Psi_4(y_4)$$

$$\times \Psi_{12}(y_1, y_2) \Psi_{24}(y_2, y_4) \Psi_{34}(y_3, y_4) \Psi_{13}(y_1, y_3)$$

The factors Ψ_{ij} measure 'compatibility' between variables y_i and y_j .

Main problems of interest

Probabilistic model:

$$P(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{y}_c) = \frac{1}{Z} \exp(-E(\mathbf{y})),$$

where E is the energy function:

$$E(\mathbf{y}) = \sum_{c \in \mathcal{C}} \Theta_c(\mathbf{y}_c), \qquad \Theta_c(\mathbf{y}_c) = -\ln \Psi_c(\mathbf{y}_c)$$

• Maximum a posteriori (MAP) inference:

$$\mathbf{y}^* = \underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{y}) = \underset{\mathbf{y}}{\operatorname{argmin}} E(\mathbf{y})$$

• Estimation of the normalisation constant:

$$Z = \sum_{\mathbf{y}} P(\mathbf{y})$$

• Estimation of the marginal distributions:

$$P(y_i) = \sum_{\mathbf{y} \setminus y_i} P(\mathbf{y})$$

TENSORIAL PERSPECTIVE

• Energy and unnormalised probability are tensors:

$$\mathbf{E}(y_1, \dots, y_n) = \sum_{c=1}^m \mathbf{\Theta}_c(\mathbf{y}_c),$$

$$\mathbf{\widehat{P}}(y_1, \dots, y_n) = \prod_{c=1}^m \mathbf{\Psi}_c(\mathbf{y}_c),$$
tensors (multidimensional arrays)

where
$$y_i \in \{1, ..., d\}$$
.

- In this language:
 - MAP-inference \iff minimal element in E
 - Normalisation constant \iff sum of all the elements of \widehat{P}

TT-FORMAT

• TT-format for a tensor A:

$$A(y_1,\ldots,y_n) = \underbrace{G_1[y_1]}_{1\times r_1}\underbrace{G_2[y_2]}_{r_1\times r_2} \ldots \underbrace{G_n[y_n]}_{r_{n-1}\times 1}$$

- Terminology:
 - G_i : TT-cores
 - r_i : TT-ranks
 - $r = \max r_i$: maximal TT-rank
- TT-format uses $O(ndr^2)$ memory to store $O(d^n)$ elements.
- Efficient only if the ranks are small.

TT-format: efficient operations and advantages

Operation	Output rank
C = A + B	$r(\mathbf{A}) + r(\mathbf{B})$
$\mathbf{C} = \mathbf{A} \odot \mathbf{B}$	$r(\mathbf{A})r(\mathbf{B})$
$\operatorname{sum} \mathbf{A}$	_
$\min \mathbf{A}$	_

TT-APPROACH FOR MARKOV RANDOM FIELDS

MAP-inference \iff minimal element in E

Normalisation constant \iff sum of all elements of \widehat{P}

Both operations are provided by the TT-format.

Let's convert E and \widehat{P} to the TT-format.

FINDING A TT-REPRESENTATION OF AN MRF

- TT-SVD (Oseledets, 2011): exact algorithm but only for small tensors No, MRF tensor is too big.
- AMEn-cross (Oseledets & Tyrtyshnikov, 2010): approximate algorithm; uses only a small fraction of the tensor's elements Possible, but there is a better way!

Converting the energy to the TT-format

$$\mathbf{E}(\mathbf{y}) = \sum_{c=1}^{m} \mathbf{\Theta}_c(\mathbf{y}_c)$$

- Each $\Theta_c(\mathbf{y}_c)$ depends only on part of the all variables and is usually of low dimensionality \Rightarrow can be converted to the TT-format using TT-SVD.
- Use the summation operation to build the TT-representation for E.
- To do this, we need to add inessential variables $\mathbf{y} \setminus \mathbf{y}_c$ to every potential: $\Theta_c(\mathbf{y}) \equiv \Theta_c(\mathbf{y}_c)$.
- The same for the probability tensor, but use the Hadamard product.

ADDING INESSENTIAL VARIABLES

- Let $\mathbf{y} = (y_1, y_2, y_3, y_4, y_5), \mathbf{y}_c = (y_1, y_2, y_4).$
- We already have the TT-format for $\Theta_c(\mathbf{y}_c)$:

$$\Theta_c(y_1, y_2, y_4) = G_1[y_1]G_2[y_2]G_4[y_4].$$

• To introduce y_3 and y_5 , define the missing cores as identity matrices:

$$\Theta_c(y_1, y_2, y_3, y_4, y_5) = G_1[y_1]G_2[y_2] \underbrace{I}_{\equiv G_3[y_3]} G_4[y_4] \underbrace{I}_{\equiv G_5[y_5]}.$$

The maximal TT-rank does not increase!

THE RESULTING ALGORITHM

- **②** Compute the TT-decomposition for each individual potential $\Theta_c(\mathbf{y}_c)$.
- **2** Add the inessential variables: $\Theta_c(\mathbf{y}_c) \Rightarrow \Theta_c(\mathbf{y})$.
- **3** Use the TT-summation to build $\mathbf{E}(\mathbf{y})$: $\mathbf{E}(\mathbf{y}) = \sum_{c=1}^{m} \mathbf{\Theta}_{c}(\mathbf{y})$.

THEOREM

The maximal TT-rank of the tensor E is polynomially bounded:

$$r(\mathbf{E}) \leq d^{\frac{p}{2}}m,$$

where

- d = number of values that each variable can take;
- m = total number of potentials;
- $p = maximal \ order \ of \ a \ potential \ (i.e. \ the \ maximal \ |\mathbf{y}_c|).$

Consider p = 2. Then $r(\mathbf{E}) \le dm$ (linear dependence on m).

TT-rounding

TT-rounding procedure: $\tilde{\mathbf{A}} = \text{round}(\mathbf{A}, \varepsilon)$:

- reduces TT-ranks
- **2** tensors are close (ε = accuracy)

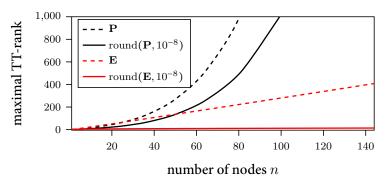
$$\operatorname{round}(\overline{G_1[y_1]} \ \, \bigcap_{G_2[y_2]} \ \, \bigcap_{G_3[y_3]} G_4[y_4] = \ \, \bigcap_{\tilde{G}_1[y_1]} \ \, \bigcap_{\tilde{G}_2[y_2]} \ \, \bigcap_{\tilde{G}_3[y_3]\tilde{G}_4[y_4]}$$

THE TT-FORMAT FOR THE PROBABILITY

• We could find the TT-representation of $\widehat{\mathbf{P}}$ analogously:

$$\widehat{\mathbf{P}} = \bigodot_{c=1}^m \mathbf{\Psi}_c$$

• However, the TT-ranks of $\widehat{\mathbf{P}}$ are exponential:



• We need to compute Z without explicitly building the TT for $\widehat{\mathbf{P}}$.

MMMA, August 2015

Normalisation constant estimation

- Kronecker product property: $ab = a \otimes b$, $a, b \in \mathbb{R}$.
- Mixed product property: $AC \otimes BD = (A \otimes B)(C \otimes D)$.
- Then

$$\widehat{\mathbf{P}}(\mathbf{y}) = \prod_{c=1}^{m} \mathbf{\Psi}_{c}(\mathbf{y})$$

$$= \bigotimes_{c=1}^{m} \mathbf{\Psi}_{c}(\mathbf{y}) = \bigotimes_{c=1}^{m} (G_{1}^{c}[y_{1}] \cdots G_{n}^{c}[y_{n}])$$

$$= (G_{1}^{1}[y_{1}] \otimes \cdots \otimes G_{1}^{m}[y_{1}]) \cdots (G_{n}^{1}[y_{n}] \otimes \cdots \otimes G_{n}^{m}[y_{n}]).$$

- Denote $A_i[y_i] = G_i^1[y_i] \otimes \cdots \otimes G_i^m[y_i]$ (this is a huge matrix).
- Then

$$Z = \sum_{\mathbf{y}} \widehat{\mathbf{P}}(\mathbf{y}) = \sum_{y_1, \dots, y_n} A_1[y_1] \dots A_n[y_n]$$
$$= \underbrace{\left(\sum_{y_1} A_1[y_1]\right)}_{B_1} \dots \underbrace{\left(\sum_{y_n} A_n[y_n]\right)}_{B_n} = \underbrace{B_1 \dots B_n}_{B_n}.$$

THE ALGORITHM

• We have obtained the following expression:

$$Z = B_1 \dots B_n$$
,

- Each matrix B_i is huge but can be exactly represented in the TT-format.
- The algorithm:

 - $\mathbf{e}_2 := \operatorname{round}(\mathbf{f}_1 B_2, \varepsilon)$
 - $\mathbf{0}$ $\mathbf{f}_3 \coloneqq \text{round}(\mathbf{f}_2 B_3, \varepsilon)$
 - 4
- This approach can be generalized to marginal distributions as well:

$$\widehat{\mathbf{P}}_i(y_i) = B_1 \dots B_{i-1} A_i[y_i] B_{i+1} \dots B_n,$$

EXPERIMENTS: MAP-INFERENCE

The TT-method for the MAP-inference:

- Convert the energy to the TT-format;
- Find the minimal element in this tensor.

We compare this method with the popular TRW-S algorithm on several real-world image segmentation problems from the OpenGM database.

Problem	Variables	Labels	TRW-S	TT	Time (sec)
gm6	320	3	45.03	43.11	637
gm29	212	3	56.81	56.21	224
gm66	198	3	75.19	74.92	172
gm105	237	3	67.81	67.71	230
gm32	100	7	150.50	289.29	257
gm70	122	7	121.78	163.60	399
gm85	143	7	168.30	228.40	1912
gm192	99	7	114.51	174.78	180

EXPERIMENTS: NORMALISATION CONSTANT SET-UP

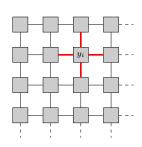
• Spin glass model:

$$\widehat{\mathbf{P}}(\mathbf{y}) = \prod_{i=1}^{n} \exp\left(-\frac{1}{T}h_{i}y_{i}\right) \prod_{(i,j)\in\mathcal{E}} \exp\left(-\frac{1}{T}c_{ij}y_{i}y_{j}\right),$$

where $y_i \in \{-1, 1\}$.

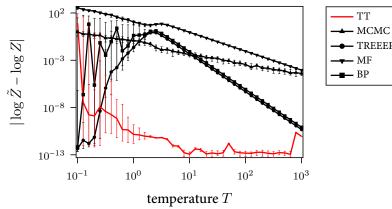
• Terminology:

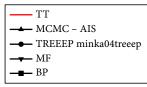
- T: temperature
- h_i : unary coefficients
- c_{ij} : pairwise coefficients



• Compare against methods from the LibDAI library ([?]).

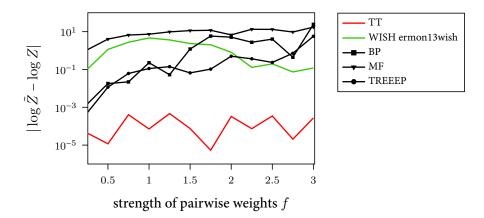
EXPERIMENTS: NORMALISATION CONSTANT





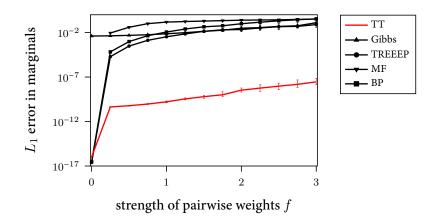
Comparison on the Ising model (all pairwise weights are equal $c_{ij} = 1$).

EXPERIMENTS: WISH



Comparison on the data from the WISH paper, T = 1, $c_{ij} \sim U[-f, f]$.

Experiments: marginal distributions



Spin glass models, T = 1, $c_{ij} \sim U[-f, f]$.

Conclusions

- TT-format is very effective for the energy tensor. We have a good method for finding its TT-representation.
- However, TT-format is not suitable for the probability tensor.
- We have proposed an algorithm which estimates the normalisation constant without building the probability tensor.
- This algorithm is much more accurate than other state-of-the-art methods.