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Summary

Many tasks in Markov random fields (MRFs) are hard.

Energy and probability of MRFs are tensors.

Tensor Train (TT) decomposition: compact representation of
high-dimensional tensors (Oseledets, 2011); efficient operations.

We use TT-format for:
partition function (normalization constant);
marginal distributions;
MAP-inference.
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MRFs and tensors

Potential

E(x1, . . . , xn) =
m∑
`=1

Θ`(x
`)

P̂ (x1, . . . , xn) =
m∏
`=1

Ψ`(x
`)


tensors (multidimensional arrays)

Factor

xi ∈ {1, . . . , d}.

MAP-inference ⇐⇒ minimal element in E

Partition function ⇐⇒ sum of all elements of P̂
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TT-format

TT-format for tensor A:
A(x1, . . . , xn) = GA1 [x1]︸ ︷︷ ︸

1×r1(A)

GA2 [x2]︸ ︷︷ ︸
r1(A)×r2(A)

. . . GAn [xn]︸ ︷︷ ︸
rn−1(A)×1

Terminology:
GAi — TT-cores;
ri(A) — TT-ranks;
r(A) = max

i=1,...,n−1
ri(A) — maximal TT-rank.

TT-format uses O
(
ndr2(A)

)
memory to store O (dn) elements.

Efficient only if TT-ranks are small.
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Example

A(x1, x2, x3) = x1 + x2 + x3,

A(x1, x2, x3) = GA1 [x1]GA2 [x2]GA3 [x3],

GA1 [x1] =
[
x1 1

]
GA2 [x2] =

[
1 0
x2 1

]
GA3 [x3] =

[
1
x3

]
Indeed:

A(x1, x2, x3) =
[
x1 1

] [ 1 0
x2 1

] [
1
x3

]
=

=
[
x1 + x2 1

] [ 1
x3

]
= x1 + x2 + x3.
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TT-format for probability

Consider TT-format for probability P = 1
Z P̂ of MRF:

P (x) = G1[x1]G2[x2] · · ·Gn[xn]

=
∑

α1,...,αn−1

G1[x1](α1)G2[x2](α1, α2) · · ·Gn[xn](αn−1)︸ ︷︷ ︸
P (x,α)

.

Chain-like model with hidden variables αi = 1, . . . , ri(P ) is constructed.

...α1

xn

G1 G2 Gn

x2x1

αn−1
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Some efficient operations in the TT-format

Operation Output rank

C = A+B r(A)+r(B)
C = A�B r(A) r(B)
minA –
sumA –
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TT-approach for MRFs

MAP-inference ⇐⇒ minimal element in E

Partition function ⇐⇒ sum of all elements of P̂

Both operations are provided by the TT-format.

Let’s convert E and P into the TT-format.
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Finding a TT-representation of an MRF

TT-SVD (Oseledets, 2011): exact TT-representation but only for
small tensors
No, MRF tensor is too big.

AMEn-cross (Oseledets & Tyrtyshnikov, 2010): approximate
TT-representation; uses only a small fraction of tensor’s elements
Possible, but there is also a much better way!
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The algorithm & its theoretical guarantees

1 Convert the potentials Θ`(x) (factors Ψ`(x)) into the TT-format.
2 Use the TT-operations: E(x) =

∑m
`=1Θ`(x) (P̂ =

⊙m
`=1 Ψ`).
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1,000

number of nodes n

m
ax
im

al
TT

-ra
nk r(P)

r(E)

Theorem. The maximal TT-rank of E constructed by the algorithm is
polynomially bounded: r(E) ≤ d

p
2m, where p is the order of MRF.
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TT-rounding

TT-rounding procedure Ã = round(A, ε):
1 reduces TT-ranks
2 tensors are close

round ( ) 
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TT-rounding example
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The algorithm motivation

TT-ranks of P̂ are exponential;

We will compute partition function Z without explicitly building the
TT- representation of P̂ .
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Partition function estimation

P̂ (x) =
m∏
`=1
Ψ`(x)

=
m⊗
`=1
Ψ`(x) =

m⊗
`=1

(
G`1[x1] · · ·G`n[xn]

)
=
(
G1
1 [x1]⊗ · · · ⊗ Gm

1 [x1]
)
· · ·
(
G1

n [xn]⊗ · · · ⊗ Gm
n [xn]

)
.

Denote: Ai [xi ] = G1
i [xi ]⊗ · · · ⊗ Gm

i [xi ].
Finally,

Z =
∑
x

P̂ (x) =
∑

x1,...,xn

A1[x1] . . .An[xn]

=

(∑
x1

A1[x1]
)

︸ ︷︷ ︸
B1

. . .

(∑
xn

An[xn]

)
︸ ︷︷ ︸

Bn

= B1 · · ·Bn
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The algorithm

Z = B1 · · ·Bn,

Each matrix Bi is huge but can be exactly represented in the TT-format.

The algorithm:
1 f1 := B1
2 f2 := round(f1B2, ε)

3 f3 := round(f2B3, ε)

4 ...
5 fn := round(fn−1Bn, ε)

6 Z̃ := fn;
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Marginal distributions

Our approach can be generalized to the marginal distributions as well:
P̂i(xi) = B1 . . .Bi−1 Ai [xi ]Bi+1 . . .Bn,
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MAP-inference

The TT-method for the MAP-inference:
1 Convert the energy into the TT-format;
2 Find the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several
real-world image segmentation problems from the OpenGM database.

Problem Variables Labels TRW-S TT Time (sec)
gm6 320 3 45.03 43.11 637
gm29 212 3 56.81 56.21 224
gm66 198 3 75.19 74.92 172
gm105 237 3 67.81 67.71 230
gm32 100 7 150.50 289.29 257
gm70 122 7 121.78 163.60 399
gm85 143 7 168.30 228.40 1 912
gm192 99 7 114.51 174.78 180
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Partition function

Spin glass model:

P̂ (x) =
n∏

i=1
exp

(
− 1
T hixi

) ∏
(i , j)∈E

exp
(
− 1
T cijxixj

)
where xi ∈ {−1, 1}.

Notation:
Temperature T ;
Unary coefficients hi ;
Pairwise coefficients cij .

xi

We compare against methods from the LibDAI library (Mooij 2010).
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Comparison
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Comparison on Ising model (all pairwise weights are equal cij = 1).
1Minka and Qi 2004.
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WISH
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Comparison on the data from the WISH paper, T = 1, cij ∼ U[−f , f ].
2Ermon et al. 2013.
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Marginal distributions
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Conclusion

Our contributions:
Algorithm that finds an exact TT-representation of MRF energy;

Algorithm that estimates the partition function and the marginals;

Theoretical guaranties for the proposed algorithms.

Source code is availible online: https://github.com/bihaqo/TT-MRF.

See poster S38 tonight!
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