Putting Markov Random Fields on a Tensor Train

Alexander Novikov ${ }^{1}$ Anton Rodomanov ${ }^{1}$ Anton Osokin ${ }^{1}$ Dmitry Vetrov ${ }^{1,2}$

${ }^{1}$ Moscow State University, Russia ${ }^{2}$ Higher School of Economics, Russia

ICML, June 22, 2014

Summary

- Many tasks in Markov random fields (MRFs) are hard.
- Energy and probability of MRFs are tensors.
- Tensor Train (TT) decomposition: compact representation of high-dimensional tensors (Oseledets, 2011); efficient operations.
- We use TT-format for:
- partition function (normalization constant);
- marginal distributions;
- MAP-inference.

MRFs and tensors

$$
\left.\begin{array}{l}
\boldsymbol{E}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\ell=1}^{m} \boldsymbol{\Theta}_{\ell}\left(\boldsymbol{x}^{\ell}\right) \\
\widehat{\boldsymbol{P}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{\ell=1}^{m} \boldsymbol{\Psi}_{\ell}\left(\boldsymbol{x}^{\ell}\right)
\end{array}\right\} \text { tensors (multidimensional arrays) }
$$

$$
x_{i} \in\{1, \ldots, d\}
$$

MAP-inference $\quad \Longleftrightarrow$ minimal element in \boldsymbol{E}
Partition function \Longleftrightarrow sum of all elements of $\widehat{\boldsymbol{P}}$

TT-format

TT-format for tensor \boldsymbol{A} :

$$
\boldsymbol{A}\left(x_{1}, \ldots, x_{n}\right)=\underbrace{G_{1}^{\boldsymbol{A}}\left[x_{1}\right]}_{1 \times r_{1}(\boldsymbol{A})} \underbrace{G_{2}^{\boldsymbol{A}}\left[x_{2}\right]}_{r_{1}(\boldsymbol{A}) \times r_{2}(\boldsymbol{A})} \cdots \underbrace{G_{n}^{A}\left[x_{n}\right]}_{r_{n-1}(\boldsymbol{A}) \times 1}
$$

Terminology:

- G_{i}^{A} - TT-cores;
- $r_{i}(\boldsymbol{A})$ - TT-ranks;
- $r(\boldsymbol{A})=\max _{i=1, \ldots, n-1} r_{i}(\boldsymbol{A})-$ maximal TT-rank.

TT-format uses $O\left(n d r^{2}(\boldsymbol{A})\right)$ memory to store $O\left(d^{n}\right)$ elements. Efficient only if TT-ranks are small.

Example

$$
\begin{gathered}
\boldsymbol{A}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}, \\
\boldsymbol{A}\left(x_{1}, x_{2}, x_{3}\right)=G_{1}^{\boldsymbol{A}}\left[x_{1}\right] G_{2}^{\boldsymbol{A}}\left[x_{2}\right] G_{3}^{\boldsymbol{A}}\left[x_{3}\right],
\end{gathered}
$$

Example

$$
\begin{gathered}
\boldsymbol{A}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}, \\
\boldsymbol{A}\left(x_{1}, x_{2}, x_{3}\right)=G_{1}^{A}\left[x_{1}\right] G_{2}^{A}\left[x_{2}\right] G_{3}^{A}\left[x_{3}\right], \\
G_{1}^{A}\left[x_{1}\right]=\left[\begin{array}{ll}
x_{1} & 1
\end{array}\right] \quad G_{2}^{A}\left[x_{2}\right]=\left[\begin{array}{cc}
1 & 0 \\
x_{2} & 1
\end{array}\right] \quad G_{3}^{A}\left[x_{3}\right]=\left[\begin{array}{c}
1 \\
x_{3}
\end{array}\right]
\end{gathered}
$$

Indeed:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ll}
x_{1} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
x_{2} & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{3}
\end{array}\right]= \\
&=\left[\begin{array}{ll}
x_{1}+x_{2} & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
x_{3}
\end{array}\right]=x_{1}+x_{2}+x_{3}
\end{aligned}
$$

TT-format for probability

Consider TT-format for probability $\boldsymbol{P}=\frac{1}{Z} \widehat{\boldsymbol{P}}$ of MRF:

$$
\begin{aligned}
\boldsymbol{P}(\boldsymbol{x}) & =G_{1}\left[x_{1}\right] G_{2}\left[x_{2}\right] \cdots G_{n}\left[x_{n}\right] \\
& =\sum_{\alpha_{1}, \ldots, \alpha_{n-1}} \underbrace{G_{1}\left[x_{1}\right]\left(\alpha_{1}\right) G_{2}\left[x_{2}\right]\left(\alpha_{1}, \alpha_{2}\right) \cdots G_{n}\left[x_{n}\right]\left(\alpha_{n-1}\right)}_{\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{\alpha})} .
\end{aligned}
$$

Chain-like model with hidden variables $\alpha_{i}=1, \ldots, r_{i}(\boldsymbol{P})$ is constructed.

Some efficient operations in the TT-format

Operation	Output rank
$\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$	$\mathrm{r}(\boldsymbol{A})+\mathrm{r}(\boldsymbol{B})$
$\boldsymbol{C}=\boldsymbol{A} \odot \boldsymbol{B}$	$\mathrm{r}(\boldsymbol{A}) \mathrm{r}(\boldsymbol{B})$
$\min \boldsymbol{A}$	-
$\operatorname{sum} \boldsymbol{A}$	-

TT-approach for MRFs

MAP-inference \Longleftrightarrow minimal element in \boldsymbol{E}
Partition function \Longleftrightarrow sum of all elements of $\widehat{\boldsymbol{P}}$

Both operations are provided by the TT-format.
Let's convert \boldsymbol{E} and \boldsymbol{P} into the TT-format.

Finding a TT-representation of an MRF

- TT-SVD (Oseledets, 2011): exact TT-representation but only for small tensors No, MRF tensor is too big.
- AMEn-cross (Oseledets \& Tyrtyshnikov, 2010): approximate TT-representation; uses only a small fraction of tensor's elements Possible, but there is also a much better way!

The algorithm \& its theoretical guarantees

(1) Convert the potentials $\Theta_{\ell}(\boldsymbol{x})$ (factors $\boldsymbol{\Psi}_{\ell}(\boldsymbol{x})$) into the TT-format.
(2) Use the TT-operations: $\boldsymbol{E}(\boldsymbol{x})=\sum_{\ell=1}^{m} \boldsymbol{\Theta}_{\ell}(\boldsymbol{x}) \quad\left(\widehat{\boldsymbol{P}}=\bigodot_{\ell=1}^{m} \boldsymbol{\Psi}_{\ell}\right)$.

The algorithm \& its theoretical guarantees

(1) Convert the potentials $\Theta_{\ell}(\boldsymbol{x})$ (factors $\boldsymbol{\Psi}_{\ell}(\boldsymbol{x})$) into the TT-format.
(2) Use the TT-operations: $\boldsymbol{E}(\boldsymbol{x})=\sum_{\ell=1}^{m} \boldsymbol{\Theta}_{\ell}(\boldsymbol{x}) \quad\left(\widehat{\boldsymbol{P}}=\bigodot_{\ell=1}^{m} \boldsymbol{\Psi}_{\ell}\right)$.

number of nodes n

Theorem. The maximal TT-rank of \boldsymbol{E} constructed by the algorithm is polynomially bounded: $r(\boldsymbol{E}) \leq d^{\frac{p}{2}} m$, where p is the order of MRF.

TT-rounding

TT-rounding procedure $\widetilde{\boldsymbol{A}}=\operatorname{round}(\boldsymbol{A}, \varepsilon)$:
(1) reduces TT-ranks
(2) tensors are close

TT-rounding example

The algorithm motivation

- TT-ranks of $\widehat{\boldsymbol{P}}$ are exponential;
- We will compute partition function Z without explicitly building the TT- representation of $\widehat{\boldsymbol{P}}$.

Partition function estimation

$$
\begin{aligned}
\widehat{P}(x) & =\prod_{\ell=1}^{m} \Psi_{\ell}(x) \\
& =\bigotimes_{\ell=1}^{m} \Psi_{\ell}(x)=\bigotimes_{\ell=1}^{m}\left(G_{1}^{\ell}\left[x_{1}\right] \cdots G_{n}^{\ell}\left[x_{n}\right]\right) \\
& =\left(G_{1}^{1}\left[x_{1}\right] \otimes \cdots \otimes G_{1}^{m}\left[x_{1}\right]\right) \cdots\left(G_{n}^{1}\left[x_{n}\right] \otimes \cdots \otimes G_{n}^{m}\left[x_{n}\right]\right) .
\end{aligned}
$$

Denote: $\quad A_{i}\left[x_{i}\right]=G_{i}^{1}\left[x_{i}\right] \otimes \cdots \otimes G_{i}^{m}\left[x_{i}\right]$.
Finally,

$$
\begin{aligned}
Z & =\sum_{\boldsymbol{x}} \widehat{\boldsymbol{P}}(\boldsymbol{x})=\sum_{x_{1}, \ldots, x_{n}} A_{1}\left[x_{1}\right] \ldots A_{n}\left[x_{n}\right] \\
& =\underbrace{\left(\sum_{x_{1}} A_{1}\left[x_{1}\right]\right)}_{B_{1}} \cdots \underbrace{\left(\sum_{x_{n}} A_{n}\left[x_{n}\right]\right)}_{B_{n}}=B_{1} \cdots B_{n}
\end{aligned}
$$

The algorithm

$$
Z=B_{1} \cdots B_{n}
$$

Each matrix B_{i} is huge but can be exactly represented in the TT-format.

The algorithm:
(1) $f_{1}:=B_{1}$
(2) $f_{2}:=\operatorname{round}\left(f_{1} B_{2}, \varepsilon\right)$
(3) $f_{3}:=\operatorname{round}\left(f_{2} B_{3}, \varepsilon\right)$
(1) ...
(6) $f_{n}:=\operatorname{round}\left(f_{n-1} B_{n}, \varepsilon\right)$
(6) $\widetilde{Z}:=f_{n}$;

Marginal distributions

Our approach can be generalized to the marginal distributions as well:

$$
\hat{P}_{i}\left(x_{i}\right)=B_{1} \ldots B_{i-1} A_{i}\left[x_{i}\right] B_{i+1} \ldots B_{n}
$$

MAP-inference

The TT-method for the MAP-inference:
(1) Convert the energy into the TT-format;
(2) Find the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several real-world image segmentation problems from the OpenGM database.

Problem	Variables	Labels	TRW-S	TT	Time (sec)
gm6	320	3	45.03	43.11	637
gm29	212	3	56.81	56.21	224
gm66	198	3	75.19	74.92	172
gm105	237	3	67.81	67.71	230
gm32	100	7	150.50	289.29	257
gm70	122	7	121.78	163.60	399
gm85	143	7	168.30	228.40	1912
gm192	99	7	114.51	174.78	180

Partition function

Spin glass model:

$$
\widehat{\boldsymbol{P}}(\boldsymbol{x})=\prod_{i=1}^{n} \exp \left(-\frac{1}{T} h_{i} x_{i}\right) \prod_{(i, j) \in \mathcal{E}} \exp \left(-\frac{1}{T} c_{i j} x_{i} x_{j}\right)
$$

where $x_{i} \in\{-1,1\}$.
Notation:

- Temperature T;
- Unary coefficients h_{i};
- Pairwise coefficients $c_{i j}$.

We compare against methods from the LibDAI library (Mooij 2010).

Comparison

Comparison on Ising model (all pairwise weights are equal $c_{i j}=1$).
${ }^{1}$ Minka and Qi 2004.

WISH

Comparison on the data from the WISH paper, $T=1, c_{i j} \sim U[-f, f]$.

[^0]
Marginal distributions

Spin glass models, $T=1, c_{i j} \sim U[-f, f]$.

Conclusion

Our contributions:

- Algorithm that finds an exact TT-representation of MRF energy;
- Algorithm that estimates the partition function and the marginals;
- Theoretical guaranties for the proposed algorithms.

Source code is availible online: https://github.com/bihaqo/TT-MRF.
See poster S38 tonight!

References I

Ermon, S. et al. (2013). "Taming the Curse of Dimensionality: Discrete Integration by Hashing and Optimization". In: International Conference on Machine Learning (ICML).
Minka, T. and Y. Qi (2004). "Tree-structured Approximations by Expectation Propagation". In: Advances in Neural Information Processing Systems 16 (NIPS), pp. 193-200.
Mooij, J. M. (2010). "libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models". In: Journal of Machine Learning Research 11, pp. 2169-2173.

[^0]: ${ }^{2}$ Ermon et al. 2013.

