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@ Many tasks in Markov random fields (MRFs) are hard.
@ Energy and probability of MRFs are tensors.

@ Tensor Train (TT) decomposition: compact representation of
high-dimensional tensors (Oseledets, 2011); efficient operations.

@ We use TT-format for:

o partition function (normalization constant);
e marginal distributions;
o MAP-inference.
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MRFs and tensors
/Potential

m
E(x1,...,%n) = Z O,(x")
=1 tensors (multidimensional arrays)

m
Pla.....x) = || ')
/=1

\ Factor

X,'E{l,...,d}.

MAP-inference <= minimal element in E

Partition function <= sum of all elements of P
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TT-format for tensor A:
A, om) = GAa] Gilal .. GAl)
—— Y= ~——
1xri(A) ri(A)xra(A) rn—1(A)x1
Terminology:
o GA — TT-cores;
@ ri(A) — TT-ranks;
o r(A) = max 1r,-(A) — maximal TT-rank.

i=1,...,

TT-format uses O (ndr?(A)) memory to store O (d") elements.
Efficient only if TT-ranks are small.
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A(x1,x2,x3) = x1 + X2 + X3,

A(x1, %2, x3) = Gi*[x1] G3* [x2] G5t [x3],
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A(x1,x2,x3) = x1 + X2 + X3,

A(x1, 32, x3) = Gi*[x1] G3* [x2] G3* 3],
Gitpal =[x 1] G{‘[Xz]:“z ‘f] G?[X31=[X13]

Indeed:
1 —_
X3 a

A(x1, x2,x3) = [ x1 1 } l ! (1)]
::{ x1+x 1 }l ;Z ] =x1 + X2 + x3.

X2
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TT-format for probability

Consider TT-format for probability P = %13 of MRF:

P(a:) = G1[X1]G2[X2] e Gn[X,,]
= Y Gial(e)Glel(ar,a2) - - Galxal(an-1) .-

Qal,...,0p—1

P(z,a)

Chain-like model with hidden variables o; = 1,...,r;(P) is constructed.
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Some efficient operations in the TT-format

Operation Output rank

C=A+B r(A)+r(B)
C=A0B r(A)r(B)
min A -

sum A -
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TT-approach for MRFs

MAP-inference <= minimal element in E

Partition function <= sum of all elements of P

Both operations are provided by the TT-format.

Let's convert E and P into the TT-format.
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Finding a TT-representation of an MRF

@ TT-SVD (Oseledets, 2011): exact TT-representation but only for
small tensors
No, MRF tensor is too big.

@ AMEn-cross (Oseledets & Tyrtyshnikov, 2010): approximate
TT-representation; uses only a small fraction of tensor’'s elements
Possible, but there is also a much better way!
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The algorithm & its theoretical guarantees

@ Convert the potentials @(x) (factors ¥y(x)) into the TT-format.
@ Use the TT-operations: E(z) =37, Oy(x) (P = Q% %).
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The algorithm & its theoretical guarantees

@ Convert the potentials @(x) (factors ¥y(x)) into the TT-format.
@ Use the TT-operations: E(z) =37, Oy(x) (P = Q% %).
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Theorem. The maximal TT-rank of E constructed by the algorithm is
polynomially bounded: r(E) < d%m, where p is the order of MRF.
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TT-rounding

TT-rounding procedure A = round(A,¢):
@ reduces TT-ranks

@ tensors are close

round| =——— ,8) =

G [x]

Gl OF [l
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unding example
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The algorithm motivation

e TT-ranks of P are exponential;

@ We will compute partition function Z without explicitly building the
TT- representation of P.
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Partition function estimation

m

P(z) = [ wi()

/=1

- Qute) - & (6il] - 6Ll
/=1

3

(Gl [x1]®- G{”[xl]) (G,f[x,,] Q- ® G,’]’[xn]) .
Denote: A,‘[X,'] = GII[X,] XX GIm[X,]

Finally,
Z = ZP(ZB Z Ailxa] ... Anlxa]
_ (ZAI[XIO (ZAH[X,,Q -
B By
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The algorithm

Z=5B B,

Each matrix B; is huge but can be exactly represented in the TT-format.

The algorithm:
QO fii=8B
Q f2 = round(lez,»s)
@ f3:=round(f2Bs,¢)

Qo ..
@ fn:=round(fn-1Bn,¢)
G z = fn;
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Marginal distributions

Our approach can be generalized to the marginal distributions as well:
.ﬁ,‘(X,‘) = B]_ e B,',]_ A,‘[X,'] B,'Jr]_ e Bn,
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MAP-inference

The TT-method for the MAP-inference:
@ Convert the energy into the TT-format;
@ Find the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several
real-world image segmentation problems from the OpenGM database.

Problem Variables Labels TRW-S TT  Time (sec)

gmé 320 3 45.03 43.11 637
gm29 212 3 56.81 56.21 224
gm66 198 3 75.19 74.92 172
gm105 237 3 67.81 67.71 230
gm32 100 7 150.50  289.29 257
gm70 122 7 121.78  163.60 399
gm85 143 7 168.30 228.40 1912
gm192 99 7 11451 174.78 180
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Partition function

Spin glass model:

where x; € {—1,1}.

Notation:
o Temperature T,
@ Unary coefficients h;;

o Pairwise coefficients cj;.

We compare against methods from the LibDAI library (Mooij 2010).
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Comparison

—TT

—a— MCMC - AIS
—e— TREEEP!
—v— MF

—a— BP

T T T T
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temperature T

Comparison on Ising model (all pairwise weights are equal ¢; = 1).

'Minka and Qi 2004.
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WISH

) —TT
10T ——— WISH2
N —=— BP

;50 10~ —— MF

| —e— TREEEP
N _
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Comparison on the data from the WISH paper, T =1, ¢; ~ U[-f, f].

2Ermon et al. 2013.
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Marginal distributions

—TT
—a— Gibbs
—e— TREEEP
—v— MF
—a— BP
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=
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Spin glass models, T =1, ¢ ~ U[—f, f].

A. Novikov et al. Putting MRFs on a Tensor Train ICML, June 22, 2014 21 /23



Conclusion

Our contributions:

@ Algorithm that finds an exact TT-representation of MRF energy;
@ Algorithm that estimates the partition function and the marginals;

@ Theoretical guaranties for the proposed algorithms.

Source code is availible online: https://github.com/bihaqo/TT-MRF.
See poster S38 tonight!
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