Putting Markov Random Fields on a Tensor Train

 $\begin{array}{ccc} \mbox{Alexander Novikov}^1 & \mbox{Anton Rodomanov}^1 & \mbox{Anton Osokin}^1 \\ & \mbox{Dmitry Vetrov}^{1,2} \end{array}$

¹ Moscow State University, Russia ² Higher School of Economics, Russia

ICML, June 22, 2014

1 / 23

- Many tasks in Markov random fields (MRFs) are hard.
- Energy and probability of MRFs are tensors.
- Tensor Train (TT) decomposition: compact representation of high-dimensional tensors (Oseledets, 2011); efficient operations.
- We use TT-format for:
 - partition function (normalization constant);
 - marginal distributions;
 - MAP-inference.

MRFs and tensors

$$E(x_1, \dots, x_n) = \sum_{\ell=1}^m \Theta_\ell(x^\ell)$$

$$\widehat{P}(x_1, \dots, x_n) = \prod_{\ell=1}^m \Psi_\ell(x^\ell)$$
Factor

tensors (multidimensional arrays)

 $x_i \in \{1,\ldots,d\}.$

MAP-inference \iff minimal element in EPartition function \iff sum of all elements of \widehat{P}

TT-format

TT-format for tensor A:

$$A(x_1,\ldots,x_n) = \underbrace{G_1^A[x_1]}_{1 \times r_1(A)} \underbrace{G_2^A[x_2]}_{r_1(A) \times r_2(A)} \ldots \underbrace{G_n^A[x_n]}_{r_{n-1}(A) \times 1}$$

Terminology:

•
$$G_i^A$$
 — TT-cores;
• $r_i(A)$ — TT-ranks;
• $r(A) = \max_{i=1,\dots,n-1} r_i(A)$ — maximal TT-rank.

TT-format uses $O(ndr^2(A))$ memory to store $O(d^n)$ elements. Efficient only if TT-ranks are small.

э

4 / 23

$$A(x_1, x_2, x_3) = x_1 + x_2 + x_3,$$

$$A(x_1, x_2, x_3) = G_1^A[x_1]G_2^A[x_2]G_3^A[x_3],$$

2

イロト イヨト イヨト イヨト

Example

$$A(x_1, x_2, x_3) = x_1 + x_2 + x_3,$$
$$A(x_1, x_2, x_3) = G_1^A[x_1]G_2^A[x_2]G_3^A[x_3],$$
$$G_1^A[x_1] = \begin{bmatrix} x_1 & 1 \end{bmatrix} \quad G_2^A[x_2] = \begin{bmatrix} 1 & 0 \\ x_2 & 1 \end{bmatrix} \quad G_3^A[x_3] = \begin{bmatrix} 1 \\ x_3 \end{bmatrix}$$

Indeed:

$$\begin{aligned} A(x_1, x_2, x_3) &= \begin{bmatrix} x_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_3 \end{bmatrix} = \\ &= \begin{bmatrix} x_1 + x_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ x_3 \end{bmatrix} = x_1 + x_2 + x_3. \end{aligned}$$

<ロト < 四ト < 三ト < 三ト

3

TT-format for probability

Consider TT-format for probability $P = \frac{1}{Z} \hat{P}$ of MRF:

$$P(x) = G_1[x_1]G_2[x_2]\cdots G_n[x_n]$$

= $\sum_{\alpha_1,\dots,\alpha_{n-1}} \underbrace{G_1[x_1](\alpha_1)G_2[x_2](\alpha_1,\alpha_2)\cdots G_n[x_n](\alpha_{n-1})}_{P(x,\alpha)}$

Chain-like model with hidden variables $\alpha_i = 1, \ldots, r_i(\mathbf{P})$ is constructed.

6 / 23

Operation	Output rank
C = A + B $C = A \odot B$ min A sum A	r(A)+r(B) r(A)r(B) -

æ

$\mathsf{MAP}\mathsf{-}\mathsf{inference} \quad \iff \quad \mathsf{minimal \ element \ in} \ E$

Partition function \iff sum of all elements of \widehat{P}

Both operations are provided by the TT-format.

Let's convert E and P into the TT-format.

- TT-SVD (Oseledets, 2011): exact TT-representation but only for small tensors
 No, MRF tensor is too big.
- AMEn-cross (Oseledets & Tyrtyshnikov, 2010): approximate TT-representation; uses only a small fraction of tensor's elements Possible, but there is also a much better way!

The algorithm & its theoretical guarantees

- **(**) Convert the potentials $\Theta_\ell(x)$ (factors $\Psi_\ell(x)$) into the TT-format.
- **2** Use the TT-operations: $E(x) = \sum_{\ell=1}^{m} \Theta_{\ell}(x) \ (\widehat{P} = \bigcirc_{\ell=1}^{m} \Psi_{\ell}).$

The algorithm & its theoretical guarantees

Convert the potentials \$\Theta_{\ell}(x)\$ (factors \$\Psi_{\ell}(x)\$) into the TT-format.
Use the TT-operations: \$E(x) = \$\sum_{\ell=1}^m \Theta_{\ell}(x)\$ (\$\hat{P} = \overline{m}_{\ell=1}^m \Psi_{\ell}\$).

Theorem. The maximal TT-rank of E constructed by the algorithm is polynomially bounded: $r(E) \le d^{\frac{p}{2}}m$, where p is the order of MRF.

TT-rounding

TT-rounding procedure $\widetilde{A} = \operatorname{round}(A, \varepsilon)$:

- reduces TT-ranks
- tensors are close

$$\operatorname{round}\left(\operatorname{cond}_{G_{1}^{A}[x_{1}]}\left[\operatorname{cond}_{G_{2}^{A}[x_{2}]}\right]\left[\operatorname{cond}_{G_{3}^{A}[x_{3}]}\right]\left[\operatorname{cond}_{G_{4}^{A}[x_{4}]}\right]=\operatorname{cond}_{G_{1}^{\widetilde{A}}[x_{1}]}\left[\operatorname{cond}_{G_{2}^{\widetilde{A}}[x_{2}]}\right]\left[\operatorname{cond}_{G_{3}^{\widetilde{A}}[x_{3}]}\right]\left[\operatorname{cond}_{G_{4}^{\widetilde{A}}[x_{4}]}\right]$$

э

TT-rounding example

ICML, June 22, 2014

• TT-ranks of \widehat{P} are exponential;

• We will compute partition function Z without explicitly building the TT- representation of \hat{P} .

Partition function estimation

$$egin{aligned} \widehat{P}(x) &= \prod_{\ell=1}^m oldsymbol{\Psi}_\ell(x) \ &= \bigotimes_{\ell=1}^m oldsymbol{\Psi}_\ell(x) = \bigotimes_{\ell=1}^m \left(G_1^\ell[x_1]\cdots G_n^\ell[x_n]
ight) \ &= \left(G_1^1[x_1]\otimes \cdots \otimes G_1^m[x_1]
ight) \cdots \left(G_n^1[x_n]\otimes \cdots \otimes G_n^m[x_n]
ight). \end{aligned}$$

Denote: $A_i[x_i] = G_i^1[x_i] \otimes \cdots \otimes G_i^m[x_i]$. Finally,

$$Z = \sum_{\boldsymbol{x}} \widehat{\boldsymbol{P}}(\boldsymbol{x}) = \sum_{x_1, \dots, x_n} A_1[x_1] \dots A_n[x_n]$$
$$= \underbrace{\left(\sum_{x_1} A_1[x_1]\right)}_{B_1} \dots \underbrace{\left(\sum_{x_n} A_n[x_n]\right)}_{B_n} = B_1 \dots B_n$$

A. Novikov et al.

ICML, June 22, 2014

Image: Image:

3 × < 3 ×

æ

$$Z=B_1\cdots B_n,$$

Each matrix B_i is huge but can be exactly represented in the TT-format.

The algorithm:

- **1** $f_1 := B_1$
- $f_2 := \operatorname{round}(f_1B_2, \varepsilon)$

4 ...

(

$$f_n := \operatorname{round}(f_{n-1}B_n, \varepsilon)$$

5
$$Z := f_n;$$

Our approach can be generalized to the marginal distributions as well: $\hat{P}_i(x_i) = B_1 \dots B_{i-1} A_i[x_i] B_{i+1} \dots B_n,$

MAP-inference

The TT-method for the MAP-inference:

- Convert the energy into the TT-format;
- If ind the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several real-world image segmentation problems from the OpenGM database.

Problem	Variables	Labels	TRW-S	TT	Time (sec)
gm6	320	3	45.03	43.11	637
gm29	212	3	56.81	56.21	224
gm66	198	3	75.19	74.92	172
gm105	237	3	67.81	67.71	230
gm32	100	7	150.50	289.29	257
gm70	122	7	121.78	163.60	399
gm85	143	7	168.30	228.40	1912
gm192	99	7	114.51	174.78	180

Spin glass model:

$$\widehat{P}(x) = \prod_{i=1}^{n} \exp\left(-\frac{1}{T}h_i x_i\right) \prod_{(i,j)\in\mathcal{E}} \exp\left(-\frac{1}{T}c_{ij}x_i x_j\right)$$

where $x_i \in \{-1, 1\}$.

Notation:

- Temperature T;
- Unary coefficients h_i;
- Pairwise coefficients c_{ij}.

We compare against methods from the LibDAI library (Mooij 2010).

Comparison

Comparison on Ising model (all pairwise weights are equal $c_{ij} = 1$).

¹ Minka and Qi 2004.			9 Q (
A. Novikov et al.	Putting MRFs on a Tensor Train	ICML, June 22, 2014	19 / 23

WISH

Comparison on the data from the WISH paper, T = 1, $c_{ii} \sim U[-f, f]$.

² Ermon et al. 2013.		< □ >	< 🗗 🕨	日本人間を	æ	୬୯୯
A. Novikov et al.	Putting MRFs on a Tensor Train		ICML	, June 22, 2014		20 / 23

Marginal distributions

Spin glass models, T = 1, $c_{ij} \sim U[-f, f]$.

Our contributions:

- Algorithm that finds an exact TT-representation of MRF energy;
- Algorithm that estimates the partition function and the marginals;
- Theoretical guaranties for the proposed algorithms.

Source code is available online: https://github.com/bihaqo/TT-MRF. See poster **S38** tonight!

- Ermon, S. et al. (2013). "Taming the Curse of Dimensionality: Discrete Integration by Hashing and Optimization". In: *International Conference on Machine Learning (ICML)*.
- Minka, T. and Y. Qi (2004). "Tree-structured Approximations by Expectation Propagation". In: Advances in Neural Information Processing Systems 16 (NIPS), pp. 193–200.
 Mooij, J. M. (2010). "libDAI: A Free and Open Source C++ Library for Distribution of the state of the stat

Discrete Approximate Inference in Graphical Models". In: *Journal of Machine Learning Research* 11, pp. 2169–2173.