Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Anton Rodomanov

Higher School of Economics, Russia
Bayesian methods research group (http://bayesgroup.ru)
14 March 2016
HSE Seminar on Applied Linear Algebra, Moscow, Russia

Outline

(1) Tensor Train Format

(2) ML Application 1: Markov Random Fields

(3) ML Application 2: TensorNet

What is a tensor?

Tensor $=$ multidimensional array:

$$
\mathbf{A}=\left[A\left(i_{1}, \ldots, i_{d}\right)\right], \quad i_{k} \in\left\{1, \ldots, n_{k}\right\}
$$

Terminology:

- dimensionality $=d$ (number of indices).
- size $=n_{1} \times \cdots \times n_{d}$ (number of nodes along each axis).

Case $d=1 \Rightarrow$ vector, $d=2 \Rightarrow$ matrix.

Curse of dimensionality

Number of elements $=n^{d}$ (exponential in $\left.d\right)$
When $n=2, d=100$

$$
2^{100}>10^{30} \quad\left(\approx 10^{18} \mathrm{~PB} \text { of memory }\right)
$$

Cannot work with tensors using standard methods.

Tensor rank decomposition [Hitchcock, 1927]

Recall the rank decomposition for matrices:

$$
A\left(i_{1}, i_{2}\right)=\sum_{\alpha=1}^{r} U\left(i_{1}, \alpha\right) V\left(i_{2}, \alpha\right)
$$

This can be generalized to tensors.
Tensor rank decomposition (canonical decomposition):

$$
A\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha=1}^{R} U_{1}\left(i_{1}, \alpha\right) \ldots U_{d}\left(i_{d}, \alpha\right)
$$

The minimal possible R is called the (canonical) rank of the tensor \mathbf{A}.

- (+) No curse of dimensionality.
- (-) III-posed problem [de Silva, Lim, 2008].
- (-) Rank R should be known in advance for many methods.
- (-) Computation of R is NP-hard [Hillar, Lim, 2013].

Unfolding matrices: definition

Every tensor \mathbf{A} has $d-1$ unfolding matrices:

$$
A_{k}:=\left[A\left(i_{1} \ldots i_{k} ; i_{k+1} \ldots i_{d}\right)\right],
$$

where

$$
A\left(i_{1} \ldots i_{k} ; i_{k+1} \ldots i_{d}\right):=A\left(i_{1}, \ldots, i_{d}\right) .
$$

Here $i_{1} \ldots i_{k}$ and $i_{k+1} \ldots i_{d}$ are row and column (multi)indices; A_{k} are matrices of size $M_{k} \times N_{k}$ with $M_{k}=\prod_{s=1}^{k} n_{s}, N_{k}=\prod_{s=k+1}^{d} n_{s}$.

This is just a reshape.

Unfolding matrices: example

Consider $\mathbf{A}=[A(i, j, k)]$ given by its elements:

$$
\begin{array}{ll}
A(1,1,1)=111, & A(2,1,1)=211 \\
A(1,2,1)=121, & A(2,2,1)=221 \\
A(1,1,2)=112, & A(2,1,2)=212 \\
A(1,2,2)=122, & A(2,2,2)=222
\end{array}
$$

Then

$$
\begin{gathered}
A_{1}=[A(i ; j k)]=\left[\begin{array}{llll}
111 & 121 & 112 & 122 \\
211 & 221 & 212 & 222
\end{array}\right], \\
A_{2}=[A(i j ; k)]=\left[\begin{array}{ll}
111 & 112 \\
211 & 212 \\
121 & 122 \\
221 & 222
\end{array}\right]
\end{gathered}
$$

Tensor Train decompositon: motivation

Main idea: variable splitting.
Consider a rank decomposition of an unfolding matrix:

$$
A\left(i_{1} i_{2} ; i_{3} i_{4} i_{5} i_{6}\right)=\sum_{\alpha_{2}} U\left(i_{1} i_{2} ; \alpha_{2}\right) V\left(i_{3} i_{4} i_{5} i_{6} ; \alpha_{2}\right) .
$$

On the left: 6-dimensional tensor; on the right: 3- and 5-dimensional. The dimension has reduced!
Proceed recursively.

Tensor Train decomposition [Oseledets, 2011]

- TT-format for a tensor \mathbf{A} :

$$
A\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha_{0}, \ldots, \alpha_{d}} G_{1}\left(\alpha_{0}, i_{1}, \alpha_{1}\right) G_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right) \ldots G_{d}\left(\alpha_{d-1}, i_{d}, \alpha_{d}\right)
$$

- This can be written compactly as a matrix product:

$$
A\left(i_{1}, \ldots, i_{d}\right)=\underbrace{G_{1}\left[i_{1}\right]}_{1 \times r_{1}} \underbrace{G_{2}\left[i_{2}\right]}_{r_{1} \times r_{2}} \ldots \underbrace{G_{d}\left[i_{d}\right]}_{r_{d-1} \times 1}
$$

- Terminology:
- G_{i} : TT-cores (collections of matrices)
- r_{i} : TT-ranks
- $r=\max r_{i}$: maximal TT-rank
- TT-format uses $O\left(d n r^{2}\right)$ memory to store $O\left(n^{d}\right)$ elements.
- Efficient only if the ranks are small.

TT-format: example

- Consider a tensor:

$$
\begin{gathered}
A\left(i_{1}, i_{2}, i_{3}\right):=i_{1}+i_{2}+i_{3} \\
i_{1} \in\{1,2,3\}, \quad i_{2} \in\{1,2,3,4\}, \quad i_{3} \in\{1,2,3,4,5\} .
\end{gathered}
$$

- Its TT-format:

$$
A\left(i_{1}, i_{2}, i_{3}\right)=G_{1}\left[i_{1}\right] G_{2}\left[i_{2}\right] G_{3}\left[i_{3}\right],
$$

where

$$
G_{1}\left[i_{1}\right]:=\left[\begin{array}{ll}
i_{1} & 1
\end{array}\right], \quad G_{2}\left[i_{2}\right]:=\left[\begin{array}{ll}
1 & 0 \\
i_{2} & 1
\end{array}\right], \quad G_{3}\left[i_{3}\right]:=\left[\begin{array}{l}
1 \\
i_{3}
\end{array}\right]
$$

- Check:

$$
\begin{aligned}
& A\left(i_{1}, i_{2}, i_{3}\right)=\left[\begin{array}{ll}
i_{1} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
i_{2} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
i_{3}
\end{array}\right]= \\
&=\left[\begin{array}{ll}
i_{1}+i_{2} & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
i_{3}
\end{array}\right]=i_{1}+i_{2}+i_{3}
\end{aligned}
$$

TT-format: example

- Consider a tensor:

$$
\begin{gathered}
A\left(i_{1}, i_{2}, i_{3}\right):=i_{1}+i_{2}+i_{3}, \\
i_{1} \in\{1,2,3\}, \quad i_{2} \in\{1,2,3,4\}, \quad i_{3} \in\{1,2,3,4,5\} .
\end{gathered}
$$

- Its TT-format:

$$
A\left(i_{1}, i_{2}, i_{3}\right)=G_{1}\left[i_{1}\right] G_{2}\left[i_{2}\right] G_{3}\left[i_{3}\right],
$$

where

$$
\begin{aligned}
& G_{1}=\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 1
\end{array}\right],\left[\begin{array}{ll}
3 & 1
\end{array}\right]\right) \\
& G_{2}=\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right]\right) \\
& G_{3}=\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right)
\end{aligned}
$$

- The tensor has $3 \cdot 4 \cdot 5=60$ elements. TT-format uses 32 elements to describe it.

Finding a TT-representation of a tensor

General ways of building a TT-decomposition of a tensor:

- Analytical formulas for the TT-cores.
- TT-SVD algorithm [Oseledets, 2011]:
- Exact quasi-optimal method.
- Suitable only for small tensors (which fit into memory).
- Interpolation algorithms: AMEn-cross [Dolgov \& Savostyanov, 2013], DMRG [Khoromskij \& Oseledets, 2010], TT-cross [Oseledets, 2010]
- Approximate heuristically-based methods.
- Can be applied for large tensors.
- No strong guarantees but work well in practice.
- Operations between other tensors in the TT-format: addition, element-wise product etc.

TT-interpolation: problem formulation

Input: procedure $A\left(i_{1}, \ldots, i_{d}\right)$ for computing an arbitrary element of \mathbf{A}.
Output: TT-decomposition of $\mathbf{B} \approx \mathbf{A}$:

$$
B\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left[i_{1}\right] \ldots G_{d}\left[i_{d}\right] .
$$

Matrix interpolation: Matrix-cross

Let $\mathbf{A} \in \mathbf{R}^{m \times n}$ with rank r.
It admits a skeleton decomposition [Goreinov et al., 1997]:

$$
\mathbf{A}=\underbrace{\mathbf{C}}_{m \times r} \underbrace{\hat{\mathbf{A}}^{-1}}_{r \times r} \underbrace{\mathbf{R}}_{r \times n},
$$

where

- $\hat{\mathbf{A}}=\mathbf{A}(\mathcal{I}, \mathcal{J})$: non-singular matrix.
- $\mathbf{C}=\mathbf{A}(:, \mathcal{J})$: columns containing $\hat{\mathbf{A}}$.
- $\mathbf{R}=\mathbf{A}(\mathcal{I},:)$: rows containing $\hat{\mathbf{A}}$.

Q: Which Â to choose?
A: Any non-singular submatrix if rank $\mathbf{A}=r \Rightarrow$ exact decomposition.
Q: What if $\operatorname{rank} \mathbf{A} \approx r$? Different $\hat{\mathbf{A}}$ will give different error.
A: Choose a maximal volume submatrix [Goreinov, Tyrtyshnikov, 2001]. It can be found with the maxvol algorithm [Goreinov et al., 2008].

TT interpolation with TT-cross: example

Hilbert tensor:

$$
A\left(i_{1}, i_{2}, \ldots, i_{d}\right):=\frac{1}{i_{1}+i_{2}+\ldots+i_{d}} .
$$

TT-rank	Time	Iterations	Relative accuracy
2	1.37	5	$1.897278 \mathrm{e}+00$
3	4.22	7	$5.949094 \mathrm{e}-02$
4	7.19	7	$2.226874 \mathrm{e}-02$
5	15.42	9	$2.706828 \mathrm{e}-03$
6	21.82	9	$1.782433 \mathrm{e}-04$
7	29.62	9	$2.151107 \mathrm{e}-05$
8	38.12	9	$4.650634 \mathrm{e}-06$
9	48.97	9	$5.233465 \mathrm{e}-07$
10	59.14	9	$6.552869 \mathrm{e}-08$
11	72.14	9	$7.915633 \mathrm{e}-09$
12	75.27	8	$2.814507 \mathrm{e}-09$

[Oseledets \& Tyrtyshnikov, 2009]

Operations: addition and multiplication by number

- Let $\mathbf{C}=\mathbf{A}+\mathbf{B}$:

$$
C\left(i_{1}, \ldots, i_{d}\right)=A\left(i_{1}, \ldots, i_{d}\right)+B\left(i_{1}, \ldots, i_{d}\right) .
$$

TT-cores of \mathbf{C} are as follows:

$$
\begin{gathered}
C_{k}\left[i_{k}\right]=\left[\begin{array}{cc}
A_{k}\left[i_{k}\right] & 0 \\
0 & B_{k}\left[i_{k}\right]
\end{array}\right], \quad k=2, \ldots, d-1, \\
C_{1}\left[i_{1}\right]=\left[\begin{array}{ll}
A_{1}\left[i_{1}\right] & \left.B_{1}\left[i_{1}\right]\right], \quad C_{d}\left[i_{d}\right]=\left[\begin{array}{c}
A_{d}\left[i_{d}\right] \\
B_{d}\left[i_{d}\right]
\end{array}\right] .
\end{array} . . .\right.
\end{gathered}
$$

The ranks are doubled.

- Multiplication by a number: $\mathbf{C}=\mathbf{A} \cdot$ const.

Multiply only one core by const. The ranks do not increase.

Operations: element-wise product

Let $\mathbf{C}=\mathbf{A} \odot \mathbf{B}$:

$$
C\left(i_{1}, \ldots, i_{d}\right)=A\left(i_{1}, \ldots, i_{d}\right) \cdot B\left(i_{1}, \ldots, i_{d}\right)
$$

TT-cores of \mathbf{C} can be computed as follows:

$$
C_{k}\left[i_{k}\right]=A_{k}\left[i_{k}\right] \otimes B_{k}\left[i_{k}\right],
$$

where \otimes is the Kronecker product operation.
$\operatorname{rank}(\mathbf{C})=\operatorname{rank}(\mathbf{A}) \operatorname{rank}(\mathbf{B})$.

TT-format: efficient operations

Operation	Output rank	Complexity
$\mathbf{A} \cdot$ const	r_{A}	$\left.O\left(d r_{A}\right)\right)$
$\mathbf{A}+$ const	$r_{A}+1$	$\left.O\left(d n r_{A}^{2}\right)\right)$
$\mathbf{A}+\mathbf{B}$	$r_{A}+r_{B}$	$O\left(d n\left(r_{A}+r_{B}\right)^{2}\right)$
$\mathbf{A} \odot \mathbf{B}$	$r_{A} r_{B}$	$O\left(d n r_{A}^{2} r_{B}^{2}\right)$
$\operatorname{sum}(\mathbf{A})$	-	$O\left(d n r_{A}^{2}\right)$

TT-rounding

TT-rounding procedure: $\tilde{\mathbf{A}}=\operatorname{round}(\mathbf{A}, \varepsilon), \varepsilon=$ accuracy:
(1) Maximally reduces TT-ranks ensuring that $\|\mathbf{A}-\tilde{\mathbf{A}}\|_{F} \leq \varepsilon\|\mathbf{A}\|_{F}$.
(2) Uses SVD for compression (like TT-SVD).

Allows one to trade off accuracy vs maximal rank of the TT-representation.
Example: $\operatorname{round}\left(\mathbf{A}+\mathbf{A}, \varepsilon_{\text {mach }}\right)=\mathbf{A}$ within machine accuracy $\varepsilon_{\text {mach }}$.

Example: multivariate integration

$$
I(d):=\int_{[0,1]^{d}} \sin \left(x_{1}+x_{2}+\ldots+x_{d}\right) d x_{1} d x_{2} \ldots d x_{d}=\operatorname{Im}\left(\left(\frac{e^{i}-1}{i}\right)^{d}\right)
$$

Use Chebyshev quadrature with $n=11$ nodes + TT-cross with $r=2$.

d	$l(d)$	Relative accuracy	Time
10	$-6.299353 \mathrm{e}-01$	$1.409952 \mathrm{e}-15$	0.14
100	$-3.926795 \mathrm{e}-03$	$2.915654 \mathrm{e}-13$	0.77
500	$-7.287664 \mathrm{e}-10$	$2.370536 \mathrm{e}-12$	4.64
1000	$-2.637513 \mathrm{e}-19$	$3.482065 \mathrm{e}-11$	11.70
2000	$2.628834 \mathrm{e}-37$	$8.905594 \mathrm{e}-12$	33.05
4000	$9.400335 \mathrm{e}-74$	$2.284085 \mathrm{e}-10$	105.49

[Oseledets \& Tyrtyshnikov, 2009]

Outline

(1) Tensor Train Format

(2) ML Application 1: Markov Random Fields

(3) ML Application 2: TensorNet

Motivational example: image segmentation

- Task: assign a label y_{i} to each pixel of an $M \times N$ image.
- Let $P(\mathbf{y})$ be the joint probability of labelling \mathbf{y}.
- Two extreme cases:
- No assumptions about independence:
- $O\left(K^{M N}\right)$ parameters ($K=$ total number of labels)
- represents every distribution
- intractable in general
- Everything is independent: $P(\mathbf{y})=p_{1}\left(y_{1}\right) \ldots p_{M N}\left(y_{M N}\right)$
- $O(M N K)$ parameters
- represents only a small class of distributions
- tractable

Graphical models

- Provide a convenient way to define probabilistic models using graphs.
- Two types: directed graphical models and Markov random fields.
- We will consider only (discrete) Markov random fields.
- The edges represent dependencies between the variables.
- E.g., for image segmentation:

A variable y_{i} is independent of the rest given its immediate neighbours.

Markov random fields

- The model:

$$
P(\mathbf{y})=\frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_{c}\left(\mathbf{y}_{c}\right)
$$

- Z: normalization constant
- \mathcal{C} : set of all (maximal) cliques in the graph
- Ψ_{c} : non-negative functions which are called factors
- Example:

$$
\begin{aligned}
P\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\frac{1}{Z} & \Psi_{1}\left(y_{1}\right) \Psi_{2}\left(y_{2}\right) \Psi_{3}\left(y_{3}\right) \Psi_{4}\left(y_{4}\right) \\
& \times \Psi_{12}\left(y_{1}, y_{2}\right) \Psi_{24}\left(y_{2}, y_{4}\right) \Psi_{34}\left(y_{3}, y_{4}\right) \Psi_{13}\left(y_{1}, y_{3}\right)
\end{aligned}
$$

The factors $\Psi_{i j}$ measure 'compatibility' between variables y_{i} and y_{j}.

Main problems of interest

Probabilistic model:

$$
P(\mathbf{y})=\frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_{c}\left(\mathbf{y}_{c}\right)=\frac{1}{Z} \exp (-E(\mathbf{y}))
$$

where E is the energy function:

$$
E(\mathbf{y})=\sum_{c \in \mathcal{C}} \Theta_{c}\left(\mathbf{y}_{c}\right), \quad \Theta_{c}\left(\mathbf{y}_{c}\right)=-\ln \Psi_{c}\left(\mathbf{y}_{c}\right)
$$

- Maximum a posteriori (MAP) inference:

$$
\mathbf{y}^{*}=\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{y})=\underset{\mathbf{y}}{\operatorname{argmin}} E(\mathbf{y})
$$

- Estimation of the normalization constant:

$$
Z=\sum_{\mathbf{y}} P(\mathbf{y})
$$

- Estimation of the marginal distributions:

$$
P\left(y_{i}\right)=\sum_{\mathbf{y} \backslash y_{i}} P(\mathbf{y})
$$

Tensorial perspective

- Energy and unnormalized probability are tensors:

$$
\left.\begin{array}{l}
\mathbf{E}\left(y_{1}, \ldots, y_{n}\right)=\sum_{c=1}^{m} \boldsymbol{\Theta}_{c}\left(\mathbf{y}_{c}\right), \\
\widehat{\mathbf{P}}\left(y_{1}, \ldots, y_{n}\right)=\prod_{c=1}^{m} \boldsymbol{\Psi}_{c}\left(\mathbf{y}_{c}\right),
\end{array}\right\} \text { tensors }
$$

where $y_{i} \in\{1, \ldots, d\}$.

- In this language:
- MAP-inference \Longleftrightarrow minimal element in \boldsymbol{E}
- Normalization constant \Longleftrightarrow sum of all the elements of $\widehat{\boldsymbol{P}}$

Details: Putting MRFs on a Tensor Train [Novikov et al., ICML 2014].

Outline

(1) Tensor Train Format

(2) ML Application 1: Markov Random Fields

(3) ML Application 2: TensorNet

Classification problem

Neural networks

hidden 1

Use a composite function:

$$
\begin{aligned}
& g(\mathbf{x})=f(\mathbf{W}_{2} \cdot \underbrace{f\left(\mathbf{W}_{1} \mathbf{x}\right)}_{\mathbf{h} \in \mathbf{R}^{m}}) \\
& h_{k}=f\left(\left(\mathbf{W}_{1} \mathbf{x}\right)_{k}\right) \\
& f(x)=\frac{1}{1+\exp (-x)}
\end{aligned}
$$

TensorNet: motivation

Goal: compress fully-connected layers.
Why care about memory?

- State-of-the-art deep neural networks don't fit into the memory of mobile devices.
- Up to 95% of the parameters are in the fully-connected layers.
- A shallow network with a huge fully-connected layer can achieve almost the same accuracy as an ensemble of deep CNNs [Ba and Caruana, 2014].

Tensor Train layer

Let \mathbf{x} be the input, \mathbf{y} be the output:

$$
\mathbf{y}=\mathbf{W} \mathbf{x}
$$

The matrix \mathbf{W} is represented in the TT-format:

$$
y\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} G_{1}\left[i_{1}, j_{1}\right] \ldots G_{d}\left[i_{d}, j_{d}\right] x\left(j_{1}, \ldots, j_{d}\right) .
$$

Parameters: TT-cores $\left\{\mathbf{G}_{k}\right\}_{k=1}^{d}$.
Details: Tensorizing Neural Networks [Novikov et al., NIPS 2015].

Conclusions

- TT-decomposition and corresponding algorithms are a good way to work with huge tensors.
- Memory and complexity depend on d linearly \Rightarrow no curse of dimensionality.
- TT-format is efficient only if the TT-ranks are small. This is the case in many applications.
- Code is available:
- Python: https://github.com/oseledets/ttpy
- MATLAB: https://github.com/oseledets/TT-Toolbox

Thanks for attention!

