Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Anton Rodomanov

Higher School of Economics, Russia

Bayesian methods research group (http://bayesgroup.ru)

14 March 2016 HSE Seminar on Applied Linear Algebra, Moscow, Russia

2 ML Application 1: Markov Random Fields

3 ML Application 2: TensorNet

イロト イポト イヨト イヨト

Tensor = multidimensional array:

$$\mathbf{A} = [A(i_1,\ldots,i_d)], \qquad i_k \in \{1,\ldots,n_k\}.$$

Terminology:

- dimensionality = d (number of indices).
- $size = n_1 \times \cdots \times n_d$ (number of nodes along each axis).

Case $d = 1 \Rightarrow$ vector, $d = 2 \Rightarrow$ matrix.

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Number of elements = n^d (exponential in d) When n = 2, d = 100 $2^{100} > 10^{30}$ ($\approx 10^{18}$ PB of memory).

Cannot work with tensors using standard methods.

Recall the rank decomposition for matrices:

$$A(i_1,i_2) = \sum_{\alpha=1}^r U(i_1,\alpha)V(i_2,\alpha).$$

This can be generalized to tensors.

Tensor rank decomposition (canonical decomposition):

$$A(i_1,\ldots,i_d)=\sum_{\alpha=1}^R U_1(i_1,\alpha)\ldots U_d(i_d,\alpha).$$

The minimal possible R is called the (canonical) rank of the tensor **A**.

- (+) No curse of dimensionality.
- (-) Ill-posed problem [de Silva, Lim, 2008].
- (-) Rank *R* should be known in advance for many methods.
- (-) Computation of R is NP-hard [Hillar, Lim, 2013].

イロト イポト イヨト イヨト 三国

Every tensor **A** has d - 1 unfolding matrices:

$$A_k := [A(i_1 \ldots i_k; i_{k+1} \ldots i_d)],$$

where

$$A(i_1\ldots i_k; i_{k+1}\ldots i_d) := A(i_1,\ldots,i_d).$$

Here $i_1 \dots i_k$ and $i_{k+1} \dots i_d$ are row and column (multi)indices; A_k are matrices of size $M_k \times N_k$ with $M_k = \prod_{s=1}^k n_s$, $N_k = \prod_{s=k+1}^d n_s$.

This is just a reshape.

イロト イ団ト イヨト イヨト 三日

Unfolding matrices: example

Consider $\mathbf{A} = [A(i, j, k)]$ given by its elements: $A(1, 1, 1) = 111, \quad A(2, 1, 1) = 211,$ $A(1, 2, 1) = 121, \quad A(2, 2, 1) = 221,$ $A(1, 1, 2) = 112, \quad A(2, 1, 2) = 212,$ $A(1, 2, 2) = 122, \quad A(2, 2, 2) = 222.$

Then

$$A_{1} = [A(i; jk)] = \begin{bmatrix} 111 & 121 & 112 & 122 \\ 211 & 221 & 212 & 222 \end{bmatrix},$$
$$A_{2} = [A(ij; k)] = \begin{bmatrix} 111 & 112 \\ 211 & 212 \\ 121 & 122 \\ 221 & 222 \end{bmatrix}.$$

Main idea: variable splitting.

Consider a rank decomposition of an unfolding matrix:

$$A(i_1i_2; i_3i_4i_5i_6) = \sum_{\alpha_2} U(i_1i_2; \alpha_2) V(i_3i_4i_5i_6; \alpha_2).$$

On the left: 6-dimensional tensor; on the right: 3- and 5-dimensional. The dimension has reduced! Proceed recursively.

通 ト イヨ ト イヨト

Tensor Train decomposition [Oseledets, 2011]

• TT-format for a tensor **A**:

$$A(i_1,\ldots,i_d)=\sum_{\alpha_0,\ldots,\alpha_d}G_1(\alpha_0,i_1,\alpha_1)G_2(\alpha_1,i_2,\alpha_2)\ldots G_d(\alpha_{d-1},i_d,\alpha_d).$$

• This can be written compactly as a matrix product:

$$A(i_1,\ldots,i_d) = \underbrace{G_1[i_1]}_{1 \times r_1} \underbrace{G_2[i_2]}_{r_1 \times r_2} \cdots \underbrace{G_d[i_d]}_{r_{d-1} \times 1}$$

- Terminology:
 - *G_i*: TT-cores (collections of matrices)
 - r_i: TT-ranks
 - $r = \max r_i$: maximal TT-rank
- TT-format uses $O(dnr^2)$ memory to store $O(n^d)$ elements.
- Efficient only if the ranks are small.

TT-format: example

• Consider a tensor:

$$egin{aligned} &\mathcal{A}(i_1,i_2,i_3):=i_1+i_2+i_3,\ &i_1\in\{1,2,3\},\quad i_2\in\{1,2,3,4\},\quad i_3\in\{1,2,3,4,5\}. \end{aligned}$$

• Its TT-format:

$$A(i_1, i_2, i_3) = G_1[i_1]G_2[i_2]G_3[i_3],$$

where

$$G_1[i_1] := \begin{bmatrix} i_1 & 1 \end{bmatrix}, \quad G_2[i_2] := \begin{bmatrix} 1 & 0 \\ i_2 & 1 \end{bmatrix}, \quad G_3[i_3] := \begin{bmatrix} 1 \\ i_3 \end{bmatrix}$$

• Check:

$$\begin{aligned} \mathcal{A}(i_1, i_2, i_3) &= \begin{bmatrix} i_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ i_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i_3 \end{bmatrix} = \\ &= \begin{bmatrix} i_1 + i_2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ i_3 \end{bmatrix} = i_1 + i_2 + i_3. \end{aligned}$$

イロト イ団ト イヨト イヨト 三日

TT-format: example

Consider a tensor:

$$egin{aligned} &\mathcal{A}(i_1,i_2,i_3):=i_1+i_2+i_3,\ &i_1\in\{1,2,3\},\quad i_2\in\{1,2,3,4\},\quad i_3\in\{1,2,3,4,5\}. \end{aligned}$$

Its TT-format:

$$A(i_1, i_2, i_3) = G_1[i_1]G_2[i_2]G_3[i_3],$$

where

$$\begin{split} G_1 &= \left(\left[\begin{array}{ccc} 1 & 1 \end{array} \right], \left[\begin{array}{ccc} 2 & 1 \end{array} \right], \left[\begin{array}{ccc} 3 & 1 \end{array} \right] \right) \\ G_2 &= \left(\left[\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{ccc} 1 & 0 \\ 2 & 1 \end{array} \right], \left[\begin{array}{ccc} 1 & 0 \\ 3 & 1 \end{array} \right], \left[\begin{array}{ccc} 1 & 0 \\ 4 & 1 \end{array} \right] \right) \\ G_3 &= \left(\left[\begin{array}{ccc} 1 \\ 1 \end{array} \right], \left[\begin{array}{ccc} 1 \\ 2 \end{array} \right], \left[\begin{array}{ccc} 1 \\ 3 \end{array} \right], \left[\begin{array}{ccc} 1 \\ 3 \end{array} \right], \left[\begin{array}{ccc} 1 \\ 4 \end{array} \right], \left[\begin{array}{ccc} 1 \\ 5 \end{array} \right] \right) \end{split}$$

The tensor has 3 · 4 · 5 = 60 elements.
 TT-format uses 32 elements to describe it.

-2

ヘロン 人間 とくほと 人 ほとう

General ways of building a TT-decomposition of a tensor:

- Analytical formulas for the TT-cores.
- TT-SVD algorithm [Oseledets, 2011]:
 - Exact quasi-optimal method.
 - Suitable only for small tensors (which fit into memory).
- Interpolation algorithms: AMEn-cross [Dolgov & Savostyanov, 2013], DMRG [Khoromskij & Oseledets, 2010], TT-cross [Oseledets, 2010]
 - Approximate heuristically-based methods.
 - Can be applied for large tensors.
 - No strong guarantees but work well in practice.
- Operations between other tensors in the TT-format: addition, element-wise product etc.

Input: procedure $A(i_1, \ldots, i_d)$ for computing an arbitrary element of **A**.

Output: TT-decomposition of $\mathbf{B} \approx \mathbf{A}$: $B(i_1, \ldots, i_d) = G_1[i_1] \ldots G_d[i_d].$

Matrix interpolation: Matrix-cross

Let $\mathbf{A} \in \mathbf{R}^{m \times n}$ with rank r.

It admits a skeleton decomposition [Goreinov et al., 1997]:

where

• $\hat{\mathbf{A}} = \mathbf{A}(\mathcal{I}, \mathcal{J})$: non-singular matrix.

- $C = A(:, \mathcal{J})$: columns containing \hat{A} .
- $\mathbf{R} = \mathbf{A}(\mathcal{I}, :)$: rows containing $\hat{\mathbf{A}}$.
- Q: Which $\hat{\mathbf{A}}$ to choose?
- A: Any non-singular submatrix if rank $\mathbf{A} = r \Rightarrow$ exact decomposition.
- Q: What if rank $\mathbf{A} \approx r$? Different $\hat{\mathbf{A}}$ will give different error.

A: Choose a maximal volume submatrix [Goreinov, Tyrtyshnikov, 2001]. It can be found with the maxvol algorithm [Goreinov et al., 2008].

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

TT interpolation with TT-cross: example

Hilbert tensor:

$$A(i_1, i_2, \ldots, i_d) := \frac{1}{i_1 + i_2 + \ldots + i_d}.$$

TT-rank	Time	Iterations Relative accura	
2	1.37	5	1.897278e+00
3	4.22	7	5.949094e-02
4	7.19	7	2.226874e-02
5	15.42	9	2.706828e-03
6	21.82	9	1.782433e-04
7	29.62	9	2.151107e-05
8	38.12	9	4.650634e-06
9	48.97	9	5.233465e-07
10	59.14	9	6.552869e-08
11	72.14	9	7.915633e-09
12	75.27	8	2.814507e-09

[Oseledets & Tyrtyshnikov, 2009]

Operations: addition and multiplication by number

• Let $\mathbf{C} = \mathbf{A} + \mathbf{B}$: $C(i_1, \dots, i_d) = A(i_1, \dots, i_d) + B(i_1, \dots, i_d)$. TT-cores of \mathbf{C} are as follows: $C_k[i_k] = \begin{bmatrix} A_k[i_k] & 0\\ 0 & B_k[i_k] \end{bmatrix}, \quad k = 2, \dots, d-1,$ $C_1[i_1] = \begin{bmatrix} A_1[i_1] & B_1[i_1] \end{bmatrix}, \quad C_d[i_d] = \begin{bmatrix} A_d[i_d]\\ B_d[i_d] \end{bmatrix}.$

The ranks are doubled.

Multiplication by a number: C = A · const.
 Multiply only one core by const. The ranks do not increase.

◆□> ◆圖> ◆国> ◆国> 三国

Let
$$\mathbf{C} = \mathbf{A} \odot \mathbf{B}$$
:
 $C(i_1, \dots, i_d) = A(i_1, \dots, i_d) \cdot B(i_1, \dots, i_d).$

TT-cores of \mathbf{C} can be computed as follows:

$$C_k[i_k] = A_k[i_k] \otimes B_k[i_k],$$

where \otimes is the Kronecker product operation.

 $rank(\mathbf{C}) = rank(\mathbf{A}) rank(\mathbf{B}).$

・ロト ・聞 と ・ 思 と ・ 思 と … 思

Operation	Output rank	Complexity
$\mathbf{A} \cdot \text{const}$	r _A	$O(dr_A))$
$\mathbf{A} + const$	$r_A + 1$	$O(dnr_A^2))$
$\mathbf{A} + \mathbf{B}$	$r_A + r_B$	$O(dn(r_A + r_B)^2)$
$\mathbf{A} \odot \mathbf{B}$	r _A r _B	$O(dnr_A^2 r_B^2)$
$\operatorname{sum}(A)$	_	$O(dnr_A^2)$

メロト 米部ト 米湾ト 米湾ト 三陸

TT-rounding

TT-rounding procedure: $\tilde{\mathbf{A}} = \operatorname{round}(\mathbf{A}, \varepsilon), \ \varepsilon = \operatorname{accuracy:}$

- **1** Maximally reduces TT-ranks ensuring that $\|\mathbf{A} \tilde{\mathbf{A}}\|_F \le \varepsilon \|\mathbf{A}\|_F$.
- **2** Uses SVD for compression (like TT-SVD).

Allows one to trade off accuracy vs maximal rank of the TT-representation.

Example: round($\mathbf{A} + \mathbf{A}, \varepsilon_{mach}$) = \mathbf{A} within machine accuracy ε_{mach} .

$$I(d) := \int_{[0,1]^d} \sin(x_1 + x_2 + \ldots + x_d) dx_1 dx_2 \ldots dx_d = \operatorname{Im}\left(\left(\frac{e^i - 1}{i}\right)^d\right)$$

Use Chebyshev quadrature with n = 11 nodes + TT-cross with r = 2.

d	I(d)	Relative accuracy	Time
10	-6.299353e-01	1.409952e-15	0.14
100	-3.926795e-03	2.915654e-13	0.77
500	-7.287664e-10	2.370536e-12	4.64
1000	-2.637513e-19	3.482065e-11	11.70
2 000	2.628834e-37	8.905594e-12	33.05
4 0 0 0	9.400335e-74	2.284085e-10	105.49

[Oseledets & Tyrtyshnikov, 2009]

2 ML Application 1: Markov Random Fields

3 ML Application 2: TensorNet

イロン イ理 とくほ とくほとう

Motivational example: image segmentation

- **Task**: assign a label y_i to each pixel of an $M \times N$ image.
- Let $P(\mathbf{y})$ be the joint probability of labelling \mathbf{y} .
- Two extreme cases:
 - No assumptions about independence:
 - $O(K^{MN})$ parameters (K = total number of labels)
 - represents every distribution
 - intractable in general
 - Everything is independent: $P(\mathbf{y}) = p_1(y_1) \dots p_{MN}(y_{MN})$
 - O(MNK) parameters
 - represents only a small class of distributions
 - tractable

ヘロン 人間 とくほと 人 ほとう

- Provide a convenient way to define probabilistic models using graphs.
- Two types: directed graphical models and Markov random fields.
- We will consider only (discrete) Markov random fields.
- The edges represent dependencies between the variables.
- E.g., for image segmentation:

A variable y_i is independent of the rest given its immediate neighbours.

Markov random fields

• The model:

$$P(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{y}_c),$$

- Z: normalization constant
- $\bullet~\mathcal{C}:$ set of all (maximal) cliques in the graph
- Ψ_c : non-negative functions which are called factors
- Example:

$$P(y_1, y_2, y_3, y_4) = \frac{1}{Z} \Psi_1(y_1) \Psi_2(y_2) \Psi_3(y_3) \Psi_4(y_4)$$

$$\times \Psi_{12}(y_1, y_2) \Psi_{24}(y_2, y_4) \Psi_{34}(y_3, y_4) \Psi_{13}(y_1, y_3)$$
he factors Ψ_{ij} measure 'compatibility' between variables y_i and y_j .

Т

Main problems of interest

Probabilistic model:

$$P(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \Psi_c(\mathbf{y}_c) = \frac{1}{Z} \exp(-E(\mathbf{y})),$$

where E is the energy function:

$$E(\mathbf{y}) = \sum_{c \in \mathcal{C}} \Theta_c(\mathbf{y}_c), \qquad \Theta_c(\mathbf{y}_c) = -\ln \Psi_c(\mathbf{y}_c)$$

• Maximum a posteriori (MAP) inference:

$$\mathbf{y}^* = \operatorname*{argmax}_{\mathbf{y}} P(\mathbf{y}) = \operatorname*{argmin}_{\mathbf{y}} E(\mathbf{y})$$

• Estimation of the normalization constant:

$$Z = \sum_{\mathbf{y}} P(\mathbf{y})$$

• Estimation of the marginal distributions:

$$P(y_i) = \sum_{\mathbf{y} \setminus y_i} P(\mathbf{y})$$

く 戸 と く ヨ と く ヨ と …

• Energy and unnormalized probability are tensors:

$$\begin{aligned} \mathbf{E}(y_1, \dots, y_n) &= \sum_{c=1}^m \mathbf{\Theta}_c(\mathbf{y}_c), \\ \widehat{\mathbf{P}}(y_1, \dots, y_n) &= \prod_{c=1}^m \mathbf{\Psi}_c(\mathbf{y}_c), \end{aligned} \right\} \quad \text{tensors} \end{aligned}$$

where $y_i \in \{1, ..., d\}$.

- In this language:
 - MAP-inference \iff minimal element in E
 - Normalization constant \Longleftrightarrow sum of all the elements of \widehat{P}

Details: Putting MRFs on a Tensor Train [Novikov et al., ICML 2014].

2 ML Application 1: Markov Random Fields

3 ML Application 2: TensorNet

イロト イヨト イヨト イヨト

Classification problem

3

- 4 緑 ト - 4 三 ト - 4 三 ト

▲口> ▲圖> ▲酒> ▲酒> 三面…

Goal: compress fully-connected layers.

Why care about memory?

- State-of-the-art deep neural networks don't fit into the memory of mobile devices.
- Up to 95% of the parameters are in the fully-connected layers.
- A shallow network with a huge fully-connected layer can achieve almost the same accuracy as an ensemble of deep CNNs [Ba and Caruana, 2014].

The matrix \mathbf{W} is represented in the TT-format:

$$y(i_1,...,i_d) = \sum_{j_1,...,j_d} G_1[i_1,j_1]...G_d[i_d,j_d] \times (j_1,...,j_d).$$

Parameters: TT-cores $\{\mathbf{G}_k\}_{k=1}^d$.

Details: Tensorizing Neural Networks [Novikov et al., NIPS 2015].

Anton Rodomanov (HSE)

(▲ 문 ► ▲ 문 ►

- TT-decomposition and corresponding algorithms are a good way to work with huge tensors.
- Memory and complexity depend on *d* linearly ⇒ no curse of dimensionality.
- TT-format is efficient only if the TT-ranks are small. This is the case in many applications.
- Code is available:
 - Python: https://github.com/oseledets/ttpy
 - MATLAB: https://github.com/oseledets/TT-Toolbox

Thanks for attention!