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What is a tensor?

Tensor = multidimensional array:

A = [A(i1, . . . , id)], ik ∈ {1, . . . , nk}.

Terminology:

dimensionality = d (number of indices).

size = n1 × · · · × nd (number of nodes along each axis).

Case d = 1 ⇒ vector, d = 2 ⇒ matrix.
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Curse of dimensionality

Number of elements = nd (exponential in d)
When n = 2, d = 100

2100 > 1030 (≈ 1018 PB of memory).

Cannot work with tensors using standard methods.
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Tensor rank decomposition [Hitchcock, 1927]

Recall the rank decomposition for matrices:

A(i1, i2) =
r∑

α=1

U(i1, α)V (i2, α).

This can be generalized to tensors.

Tensor rank decomposition (canonical decomposition):

A(i1, . . . , id) =
R∑
α=1

U1(i1, α) . . .Ud(id , α).

The minimal possible R is called the (canonical) rank of the tensor A.

(+) No curse of dimensionality.

(-) Ill-posed problem [de Silva, Lim, 2008].

(-) Rank R should be known in advance for many methods.

(-) Computation of R is NP-hard [Hillar, Lim, 2013].
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Unfolding matrices: definition

Every tensor A has d − 1 unfolding matrices:

Ak := [A(i1 . . . ik ; ik+1 . . . id)],

where
A(i1 . . . ik ; ik+1 . . . id) := A(i1, . . . , id).

Here i1 . . . ik and ik+1 . . . id are row and column (multi)indices; Ak are
matrices of size Mk × Nk with Mk =

∏k
s=1 ns , Nk =

∏d
s=k+1 ns .

This is just a reshape.
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Unfolding matrices: example

Consider A = [A(i , j , k)] given by its elements:

A(1, 1, 1) = 111, A(2, 1, 1) = 211,

A(1, 2, 1) = 121, A(2, 2, 1) = 221,

A(1, 1, 2) = 112, A(2, 1, 2) = 212,

A(1, 2, 2) = 122, A(2, 2, 2) = 222.

Then

A1 = [A(i ; jk)] =

[
111 121 112 122
211 221 212 222

]
,

A2 = [A(ij ; k)] =


111 112
211 212
121 122
221 222

 .
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Tensor Train decompositon: motivation

Main idea: variable splitting.

Consider a rank decomposition of an unfolding matrix:

A(i1i2; i3i4i5i6) =
∑
α2

U(i1i2;α2)V (i3i4i5i6;α2).

On the left: 6-dimensional tensor; on the right: 3- and 5-dimensional.
The dimension has reduced!
Proceed recursively.
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Tensor Train decomposition [Oseledets, 2011]

TT-format for a tensor A:

A(i1, . . . , id) =
∑

α0,...,αd

G1(α0, i1, α1)G2(α1, i2, α2) . . .Gd(αd−1, id , αd).

This can be written compactly as a matrix product:

A(i1, . . . , id) = G1[i1]︸ ︷︷ ︸
1×r1

G2[i2]︸ ︷︷ ︸
r1×r2

. . .Gd [id ]︸ ︷︷ ︸
rd−1×1

Terminology:

Gi : TT-cores (collections of matrices)
ri : TT-ranks
r = max ri : maximal TT-rank

TT-format uses O(dnr2) memory to store O(nd) elements.

Efficient only if the ranks are small.
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TT-format: example

Consider a tensor:

A(i1, i2, i3) := i1 + i2 + i3,

i1 ∈ {1, 2, 3}, i2 ∈ {1, 2, 3, 4}, i3 ∈ {1, 2, 3, 4, 5}.

Its TT-format:
A(i1, i2, i3) = G1[i1]G2[i2]G3[i3],

where

G1[i1] :=
[
i1 1

]
, G2[i2] :=

[
1 0
i2 1

]
, G3[i3] :=

[
1
i3

]
Check:

A(i1, i2, i3) =
[
i1 1

] [ 1 0
i2 1

] [
1
i3

]
=

=
[
i1 + i2 1

] [ 1
i3

]
= i1 + i2 + i3.
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TT-format: example

Consider a tensor:

A(i1, i2, i3) := i1 + i2 + i3,

i1 ∈ {1, 2, 3}, i2 ∈ {1, 2, 3, 4}, i3 ∈ {1, 2, 3, 4, 5}.

Its TT-format:
A(i1, i2, i3) = G1[i1]G2[i2]G3[i3],

where
G1 =

([
1 1

]
,
[

2 1
]
,
[

3 1
])

G2 =

([
1 0
1 1

]
,

[
1 0
2 1

]
,

[
1 0
3 1

]
,

[
1 0
4 1

])
G3 =

([
1
1

]
,

[
1
2

]
,

[
1
3

]
,

[
1
4

]
,

[
1
5

])
The tensor has 3 · 4 · 5 = 60 elements.
TT-format uses 32 elements to describe it.
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Finding a TT-representation of a tensor

General ways of building a TT-decomposition of a tensor:

Analytical formulas for the TT-cores.

TT-SVD algorithm [Oseledets, 2011]:

Exact quasi-optimal method.
Suitable only for small tensors (which fit into memory).

Interpolation algorithms: AMEn-cross [Dolgov & Savostyanov, 2013],
DMRG [Khoromskij & Oseledets, 2010], TT-cross [Oseledets, 2010]

Approximate heuristically-based methods.
Can be applied for large tensors.
No strong guarantees but work well in practice.

Operations between other tensors in the TT-format: addition,
element-wise product etc.
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TT-interpolation: problem formulation

Input: procedure A(i1, . . . , id) for computing an arbitrary element of A.

Output: TT-decomposition of B ≈ A:

B(i1, . . . , id) = G1[i1] . . .Gd [id ].
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Matrix interpolation: Matrix-cross

Let A ∈ Rm×n with rank r .
It admits a skeleton decomposition [Goreinov et al., 1997]:

A = C︸︷︷︸
m×r

Â
−1︸︷︷︸

r×r
R︸︷︷︸
r×n

,

where

Â = A(I,J ): non-singular matrix.

C = A(:,J ): columns containing Â.

R = A(I, :): rows containing Â.

Q: Which Â to choose?
A: Any non-singular submatrix if rank A = r ⇒ exact decomposition.

Q: What if rank A ≈ r? Different Â will give different error.
A: Choose a maximal volume submatrix [Goreinov, Tyrtyshnikov, 2001]. It can
be found with the maxvol algorithm [Goreinov et al., 2008].
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TT interpolation with TT-cross: example

Hilbert tensor:

A(i1, i2, . . . , id) :=
1

i1 + i2 + . . .+ id
.

TT-rank Time Iterations Relative accuracy

2 1.37 5 1.897278e+00
3 4.22 7 5.949094e-02
4 7.19 7 2.226874e-02
5 15.42 9 2.706828e-03
6 21.82 9 1.782433e-04
7 29.62 9 2.151107e-05
8 38.12 9 4.650634e-06
9 48.97 9 5.233465e-07

10 59.14 9 6.552869e-08
11 72.14 9 7.915633e-09
12 75.27 8 2.814507e-09

[Oseledets & Tyrtyshnikov, 2009]
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Operations: addition and multiplication by number

Let C = A + B:

C (i1, . . . , id) = A(i1, . . . , id) + B(i1, . . . , id).

TT-cores of C are as follows:

Ck [ik ] =

[
Ak [ik ] 0

0 Bk [ik ]

]
, k = 2, . . . , d − 1,

C1[i1] =
[
A1[i1] B1[i1]

]
, Cd [id ] =

[
Ad [id ]
Bd [id ]

]
.

The ranks are doubled.

Multiplication by a number: C = A · const.
Multiply only one core by const. The ranks do not increase.
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Operations: element-wise product

Let C = A� B:

C (i1, . . . , id) = A(i1, . . . , id) · B(i1, . . . , id).

TT-cores of C can be computed as follows:

Ck [ik ] = Ak [ik ]⊗ Bk [ik ],

where ⊗ is the Kronecker product operation.

rank(C) = rank(A) rank(B).
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TT-format: efficient operations

Operation Output rank Complexity

A · const rA O(drA))
A + const rA + 1 O(dnr2A))
A + B rA + rB O(dn(rA + rB)2)
A� B rArB O(dnr2Ar

2
B)

sum(A) − O(dnr2A)
. . .
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TT-rounding

TT-rounding procedure: Ã = round(A, ε), ε = accuracy:

1 Maximally reduces TT-ranks ensuring that ‖A− Ã‖F ≤ ε ‖A‖F .

2 Uses SVD for compression (like TT-SVD).

round( )

Allows one to trade off accuracy vs maximal rank of the TT-representation.

Example: round(A + A, εmach) = A within machine accuracy εmach.
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Example: multivariate integration

I (d) :=

∫
[0,1]d

sin(x1 + x2 + . . .+ xd)dx1dx2 . . . dxd = Im

((
e i − 1

i

)d
)
.

Use Chebyshev quadrature with n = 11 nodes + TT-cross with r = 2.

d I (d) Relative accuracy Time

10 -6.299353e-01 1.409952e-15 0.14
100 -3.926795e-03 2.915654e-13 0.77
500 -7.287664e-10 2.370536e-12 4.64

1 000 -2.637513e-19 3.482065e-11 11.70
2 000 2.628834e-37 8.905594e-12 33.05
4 000 9.400335e-74 2.284085e-10 105.49

[Oseledets & Tyrtyshnikov, 2009]
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Motivational example: image segmentation

Task: assign a label yi to each pixel of an M × N image.

Let P(y) be the joint probability of labelling y.
Two extreme cases:

No assumptions about independence:
O(KMN) parameters (K = total number of labels)
represents every distribution
intractable in general

Everything is independent: P(y) = p1(y1) . . . pMN(yMN)
O(MNK) parameters
represents only a small class of distributions
tractable
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Graphical models

Provide a convenient way to define probabilistic models using graphs.

Two types: directed graphical models and Markov random fields.

We will consider only (discrete) Markov random fields.

The edges represent dependencies between the variables.

E.g., for image segmentation:

yi yi

A variable yi is independent of the rest given its immediate
neighbours.
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Markov random fields

The model:

P(y) =
1

Z

∏
c∈C

Ψc(yc),

Z : normalization constant
C: set of all (maximal) cliques in the graph
Ψc : non-negative functions which are called factors

Example:

y1 y2

y3 y4

P(y1, y2, y3, y4) =
1

Z
Ψ1(y1)Ψ2(y2)Ψ3(y3)Ψ4(y4)

× Ψ12(y1, y2)Ψ24(y2, y4)Ψ34(y3, y4)Ψ13(y1, y3)

The factors Ψij measure ’compatibility’ between variables yi and yj .
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Main problems of interest

Probabilistic model:

P(y) =
1

Z

∏
c∈C

Ψc(yc) =
1

Z
exp(−E (y)),

where E is the energy function:

E (y) =
∑
c∈C

Θc(yc), Θc(yc) = − lnΨc(yc)

Maximum a posteriori (MAP) inference:

y∗ = argmax
y

P(y) = argmin
y

E (y)

Estimation of the normalization constant:

Z =
∑

y

P(y)

Estimation of the marginal distributions:

P(yi ) =
∑
y\yi

P(y)
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Tensorial perspective

Energy and unnormalized probability are tensors:

E(y1, . . . , yn) =
m∑

c=1

Θc(yc),

P̂(y1, . . . , yn) =
m∏

c=1

Ψc(yc),

 tensors

where yi ∈ {1, . . . , d}.
In this language:

MAP-inference ⇐⇒ minimal element in E
Normalization constant ⇐⇒ sum of all the elements of P̂

Details: Putting MRFs on a Tensor Train [Novikov et al., ICML 2014].
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Classification problem
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Neural networks

Use a composite function:

g(x) = f (W2 · f (W1x)︸ ︷︷ ︸
h∈Rm

)

hk = f ((W1x)k)

f (x) =
1

1 + exp(−x)

input

hidden 1

output

...

h1

hm

...

h2

xn

x1

... g(x)
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TensorNet: motivation

Goal: compress fully-connected layers.

Why care about memory?

State-of-the-art deep neural networks don’t fit into the memory of
mobile devices.

Up to 95% of the parameters are in the fully-connected layers.

A shallow network with a huge fully-connected layer can achieve
almost the same accuracy as an ensemble of deep CNNs [Ba and

Caruana, 2014].

Anton Rodomanov (HSE) TT-decomposition
14 March 2016 HSE Seminar on Applied Linear Algebra, Moscow, Russia 29

/ 31



Tensor Train layer

Let x be the input, y be the output:

y = Wx.

The matrix W is represented in the TT-format:

y(i1, . . . , id) =
∑

j1,..., jd

G1[i1, j1] . . .Gd [id , jd ]x(j1, . . . , jd).

Parameters: TT-cores {Gk}dk=1.

Details: Tensorizing Neural Networks [Novikov et al., NIPS 2015].
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Conclusions

TT-decomposition and corresponding algorithms are a good way to
work with huge tensors.

Memory and complexity depend on d linearly ⇒ no curse of
dimensionality.

TT-format is efficient only if the TT-ranks are small. This is the case
in many applications.

Code is available:

Python: https://github.com/oseledets/ttpy

MATLAB: https://github.com/oseledets/TT-Toolbox

Thanks for attention!
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