
A Newton-type Incremental Method with a
Superlinear Convergence Rate∗

Anton Rodomanov
Higher School of Economics

Moscow, Russia
anton.rodomanov@gmail.com

Dmitry Kropotov
Lomonosov Moscow State University

Moscow, Russia
dmitry.kropotov@gmail.com

Abstract

We consider the problem of optimizing the strongly convex sum of a finite num-
ber of convex functions. Standard algorithms for solving this problem in the class
of incremental/stochastic methods have at most a linear convergence rate. We
propose a new incremental method whose convergence rate is superlinear—the
Newton-type incremental method (NIM). The idea of the method is to introduce
an overall quadratic model of the objective with the same sum-of-functions struc-
ture and further update a single component per iteration. We prove that NIM has
a superlinear local convergence rate and linear global convergence rate. Experi-
ments show that the method is very effective for problems with a large number of
functions and a small number of variables.

1 Introduction

In this paper we consider the following strongly convex unconstrained optimization problem:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x) +
µ

2
‖x‖22

]
, (1)

where fi : Rd → R, i = 1, . . . , n, are twice continuously differentiable convex functions and
µ > 0. A typical example of such a problem is `2-regularized empirical risk minimization for
training a machine learning algorithm. In this case the variables x are the parameters of the model
and the value fi(x) measures the error of the model on the ith training sample. Since the objective
f is strongly convex, it has the unique minimizer which we denote by x∗.

Context. We consider the case when the number of functions n may be very large. In this situation
for minimizing f it is convenient to use incremental optimization methods [1] since the complexity
of their iteration does not depend on n. Unlike classic optimization methods which operate on all the
n functions at every iteration, incremental methods operate only on a single component fi at every
iteration. If each incremental iteration tends to make reasonable progress in some “average” sense,
then an incremental method may significantly outperform its non-incremental counterpart [1].

Contributions. In this work we propose a new incremental optimization method that has a fast
superlinear local convergence rate—the Newton-type incremental method (NIM). To the best of our
knowledge, this is the first method in the class of incremental methods whose convergence rate is
superlinear. We provide a theoretical analysis of the convergence of NIM (both local and global)
and show in particular that NIM accelerates to a quadratic rate w.r.t. epochs.

∗This research was financially supported by RFBR grant #15-31-20596mol-a-ved, Microsoft Research, re-
search initiative: Computer vision collaborative research in Russia, Skoltech SDP Initiative, applications A1
and A2.

1

Related work. Our work is related to the literature on incremental optimization methods. Incre-
mental optimization methods are an actively developing research area [5, 3, 15]. They all can be
divided into two groups depending on their convergence rate.

The first group contains the stochastic gradient method (SGD) and other methods with iterations of
the form, xk+1 = xk −αkBk(∇fik(xk) + µxk), where Bk is some scaling matrix. For instance, in
SGD Bk is just the identity matrix; in the oBFGS and oLBFGS methods [15], the matrix Bk is set
to a quasi-Newton estimate of the inverse Hessian which is calculated according to the BFGS and
L-BFGS formulas; in the SGD-QN method [3] the matrix Bk is a diagonal matrix whose entries are
estimated from the secant equation; the SQN method [5] is an advanced version of oLBFGS; instead
of estimating the gradient difference ∇f(xk+1)−∇f(xk) by subtracting two stochastic gradients,
SQN estimates it by multiplying a stochastic Hessian by the deterministic difference xk+1 − xk.
Compared to SGD, all these methods may have better practical performance. However, none of them
qualitatively improves on the convergence rate—any method from this group has a slow sublinear
rate, including the method with Bk = ∇2f(xk)−1 [4].

The second group contains methods such as SAG [14], IAG [2], SVRG [11], FINITO [8], SAGA [7],
MISO [13] etc. The common property of these methods is that they use such estimates of the
objective gradient ∇f(xk) whose error tends to zero as the iterate xk approaches the optimum x∗.
As a result, these methods may converge with constant step size, and their convergence rate is linear.

Recently Gurbuzbalaban et al. have proposed the incremental Newton (IN) method [10]. Despite a
similar name, the IN method is quite different to NIM. The IN method belongs to the first group of
incremental methods with Bk equal to a partial sum of∇2fi, and its convergence rate is sublinear.

The most closely-related method to NIM is SFO [16]. This method also uses a second-order model
for each function fi, but, instead of the true Hessian ∇2fi(v

k
i), it works with its approximation

obtained with the help of an L-BFGS-like technique. Although no convergence analysis of SFO
is given in [16], experiments show that its convergence rate is linear. This shows that the Hessian
approximation of SFO is not accurate enough to ensure a superlinear rate.

2 Method NIM

We begin the derivation of NIM by constructing a quadratic model of f at the current iteration k.
First, we form the following convex quadratic model of each fi:

fi(x) ≈ mi
k(x) := fi(v

i
k) +∇fi(vik)>(x− vik) +

1

2
(x− vik)>∇2fi(v

i
k)(x− vik)

for some point vik ∈ Rd. Once we have a model of each fi, we can naturally build a model of f :

f(x) ≈ mk(x) :=
1

n

n∑
i=1

mi
k(x) +

µ

2
‖x‖22 .

Note that the model mk is a strongly convex function and hence has the unique minimizer x̄k :=
argminxmk(x). By setting the gradient of mk to zero, we obtain the following formula for x̄k:

x̄k = (Hk + µI)−1(uk − gk), (2)

where we use the notation

Hk :=
1

n

n∑
i=1

∇2fi(v
i
k), uk :=

1

n

n∑
i=1

∇2fi(v
i
k)vik, gk :=

1

n

n∑
i=1

∇fi(vik). (3)

To obtain the new iterate xk+1, NIM makes a step in the direction of the minimum of the modelmk:

xk+1 := αkx̄k + (1− αk)xk, (4)

where αk ∈ (0, 1] is the step size. After the step is done, we update the model m or, equivalently,
the centers v. To keep the iteration complexity low, we update only one component of the full model
at every iteration:

vik+1 :=

{
xk+1 if i = ik,

vik otherwise,
where ik ∈ {1, . . . , n} is the index of the component to update.

2

3 Convergence analysis

In this section we state the results about local and global convergence rates of NIM. The proof of
these results can be found in the Appendix.
Theorem 1 (local convergence rate). Suppose the Hessians∇2fi are Lipschitz-continuous:∥∥∇2fi(x)−∇2fi(y)

∥∥
2
≤M ‖x− y‖2 , i = 1, . . . , n,

for all x, y ∈ Rd. Let {xk} be the sequence of iterates generated by NIM with the unit step size
αk ≡ 1 and cyclic order of component selection. If all the model centers are initialized close
enough to the solution x∗ of (1),

∥∥vi0 − x∗∥∥2 ≤ (2µ)/(M
√
n), i = 1, . . . , n, then the sequence

{xk} converges to x∗ at an R-superlinear rate:

‖xk − x∗‖2 ≤ rk and lim
k→∞

rk+1

rk
= 0.

More precisely, the convergence rate of {xk} is n-step R-quadratic:

rk+n ≤
M

2µ
r2k, k = 2n, 2n+ 1,

Theorem 2 (global convergence rate). Suppose the gradients∇fi are Lipschitz-continuous:

‖∇fi(x)−∇fi(y)‖2 ≤ Lf ‖x− y‖2 , i = 1, . . . , n,

for all x, y ∈ Rd. Denote the condition number of f as κ := (Lf +µ)/µ. Let {xk} be the sequence
of iterates generated by NIM with the cyclic order of component selection and a constant step size
αk ≡ α, where α < ᾱ := 2κ−3(1+19κ(n−1))−1. Then, for any initialization of the model centers
vi0, i = 1, . . . , n, the sequence {xk} converges to the solution x∗ of (1) at an R-linear rate:

‖xk − x∗‖2 ≤
√
κ · ck/2 ‖x0 − x∗‖2

where c := h1/(1+2(n−1)) for h := 1− 2κ−1α+ κ2(1 + 19κ(n− 1))α2.

4 Implementation details

Model update. Since we update only one component of the full model at every iteration we need
not compute the sums in (3) every time. Instead, we keep track of the quantities Hk, uk, gk and
update them as follows (here i denotes the index of the selected component at iteration k):

Hk+1 = Hk +
1

n

[
∇2fi(v

i
k+1)−∇2fi(v

i
k)
]
,

uk+1 = uk +
1

n

[
∇2fi(v

i
k+1)vik+1 −∇2fi(v

i
k)vik

]
,

gk+1 = gk +
1

n

[
∇fi(vik+1)−∇fi(vik)

]
.

(5)

In order to do this, we need to store all the centers vik in memory. Taking into account the cost of
storing Hk, uk, gk, the total storage cost of NIM is O(nd + d2). Note that we do not store the
separate Hessians ∇2fi(v

i
k) in memory because it would cost O(nd2). Therefore, to update the

model, we need to compute the selected fi twice—once at the new point vik+1 = xk+1 and once at
the previous point vik.

Order of component selection. We have experimented with two standard strategies for choosing
the component ik to update: 1) cyclic when ik = (k mod n) + 1 and 2) randomized when at every
iteration ik ∈ {1, . . . , n} is chosen uniformly at random. In all our experiments we observed that
NIM always converges faster under the cyclic order. This is quite different to incremental gradient
methods for which it is always better to use randomized order both in theory and practice[1, 6].

Linear models. In many machine learning problems the functions fi have the following linearly-
parameterized form: fi(x) := φi(a

>
i x), where φi : R→ R is a univariate function and ai ∈ Rd is

some known vector. In this case, by exploiting the structure of the functions fi, we can substantially

3

reduce the iteration complexity and storage cost of NIM. Namely, denoting νik := a>i v
i
k, we can

rewrite (5) as follows:

Hk+1 = Hk +
1

n

[
φ′′i (νik+1)− φ′′i (νik)

]
aia
>
i ,

uk+1 = uk +
1

n

[
φ′′i (νik+1)νik+1 − φ′′i (νik)νik

]
ai,

gk+1 = gk +
1

n

[
φ′i(ν

i
k+1)− φ′i(νik)

]
ai.

Note that the update of Hk is a matrix rank-1 update. Therefore, using the Sherman-Morrison
formula, we can write the update for the inverse matrix Bk := (Hk + µI)−1:

Bk+1 = Bk −
δkBkaia

>
i Bk

n+ δka>i Bkai
, where δk := φ′′i (νik+1)− φ′′i (νik).

Once we have the matrix Bk, the cost of finding x̄k by formula (2) reduces from O(d3) to O(d2),
so, instead of working with matrices Hk, we can work directly with matrices Bk. Also, instead of
storing n vectors vik, now we need to store only n scalars νik. This reduces the memory requirements
of NIM from O(nd+ d2) to O(n+ d2).

5 Experiments

We compare the empirical performance of NIM with that of several other methods for solving (1)
on the `2-regularized logistic regression problem. We use the following methods in our compari-
son: 1) NIM: the proposed method NIM (the version for linear models with the unit step size and
cyclic order of component selection; see Section 4), 2) SGD: the classic stochastic gradient method
(with step size αk = n/(10k)) as a representative of sublinearly convergent incremental methods,
3) SAG: the stochastic average gradient [14] (the version for linear models with constant step size
α = 1/L, where L is the analytically calculated Lipschitz constant) as a representative of linearly
convergent incremental methods, 4) Newton: the classic Newton method (with the unit step size)
as a non-incremental variant of NIM, 5) L-BFGS: the limited-memory BFGS method [12] (with the
history of size 10) and 6) HFN: the Hessian-free (inexact) Newton method [9] as the two most pop-
ular variants of the classic Newton method, and 7) SFO: the sum of functions optimizer [16] (with
default parameters) as the most closely-related algorithm to NIM. All the methods except SFO are
implemented in C++; for SFO we use its public implementation in Python. As training data, we use
the following two data sets from the LIBSVM site that correspond to the cases of moderate and large
n in problem (1): 1) a9a (˜32k samples, 123 features), and 2) a binarized mnist8m data set1 (˜8m
samples and 784 features). We set the regularization coefficient µ to 1/n and run all methods from
x0 = 0. Figure 1 shows the results of our experiments23.

0 5 10 15 20 25
Epoch

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

O
b

je
ct

iv
e

 m
in

u
s

o
p

ti
m

u
m

SAG

SFO

SGD

Newton

HFN

L-BFGS

NIM

0.0 0.5 1.0 1.5 2.0 2.5

Time (in seconds)

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

O
b

je
ct

iv
e

 m
in

u
s

o
p

ti
m

u
m

SAG

SFO

SGD

Newton

HFN

L-BFGS

NIM

(a) The case of moderate n.

0 5 10 15 20

Epoch

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

O
b

je
ct

iv
e

 m
in

u
s

o
p

ti
m

u
m

SAG

SGD

Newton

NIM

0 1 2 3 4 5 6

Time (in hours)

10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

O
b

je
ct

iv
e

 m
in

u
s

o
p

ti
m

u
m

SAG

SGD

Newton

NIM

(b) The case of large n.

Figure 1: Comparison of NIM with other methods.

1To binarize the original mnist8m data set, we group digits with labels 0, 1, 2, 3, 4 into the first class, and
digits with labels 5, 6, 7, 8, 9 into the second class.

2We use a stairstep plot for non-incremental methods (Newton, L-BFGS and HFN) to highlight that their
iterations are very expensive (require a full pass over the training set) and cannot be interrupted in the middle.

3Since methods L-BFGS and HFN cannot be efficiently applied for large n, they are not shown in Figure 1b.
We also do not show SFO in this experiment because its Python implementation is quite slow on large data sets.

4

References

[1] Dimitri P Bertsekas. Incremental gradient, subgradient, and proximal methods for convex
optimization: A survey. Optimization for Machine Learning, 2010:1–38, 2011.

[2] Doron Blatt, Alfred O Hero, and Hillel Gauchman. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

[3] Antoine Bordes, Léon Bottou, and Patrick Gallinari. SGD-QN: Careful quasi-newton stochas-
tic gradient descent. The Journal of Machine Learning Research, 10:1737–1754, 2009.

[4] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in neural
information processing systems, pages 161–168, 2008.

[5] Richard H Byrd, SL Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-newton
method for large-scale optimization. arXiv preprint arXiv:1401.7020, 2014.

[6] Aaron Defazio. New Optimization Methods for Machine Learning. PhD thesis, Australian
National University, 2014, 2014.

[7] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[8] Aaron J Defazio, Tibério S Caetano, and Justin Domke. Finito: A faster, permutable incremen-
tal gradient method for big data problems. In Proceedings of 31st International Conference on
Machine Learning, 2014.

[9] Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. Inexact Newton methods. SIAM
Journal on Numerical analysis, 19(2):400–408, 1982.

[10] Mert Gürbüzbalaban, Asuman Ozdaglar, and Pablo Parrilo. A globally convergent incremental
newton method. Mathematical Programming, 151(1):283–313, 2015.

[11] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[12] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical programming, 45(1-3):503–528, 1989.

[13] Julien Mairal. Incremental majorization-minimization optimization with application to large-
scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

[14] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2013.

[15] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for on-
line convex optimization. In International Conference on Artificial Intelligence and Statistics,
pages 436–443, 2007.

[16] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale optimization by unify-
ing stochastic gradient and quasi-Newton methods. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 604–
612, 2014.

5

A Local convergence rate: proof

In this section we prove Theorem 1 about the local convergence rate of NIM.

A.1 Outline of the proof

The proof is organized as follows:

1. First, we show that the sequence {‖xk − x∗‖2} of the residuals of NIM is bounded above
by the following recurrent sequence (Lemma 1):

rk :=
M

2µn
(r2k−1 + r2k−2 + · · ·+ r2k−n), k = n, n+ 1, . . . ,

rk := ‖xk − x∗‖2 , k = 0, . . . , n− 1.

2. Then we prove that, starting from some moment, the sequence {rk} decreases monotoni-
cally (Lemma 5):

rk+1 ≤ rk, k = 2n, 2n+ 1,

3. From this it follows that the convergence rate of {rk} is n-step quadratic (Lemma 6):

rk ≤
M

2µ
r2k−n, k = 3n, 3n+ 1,

4. Then with the help of Lemma 7 and Lemma 8 we build a majorizing sequence {qk} for the
ratio rk+1/rk:

rk+1

rk
≤ qk, k = 3n, 3n+ 1, . . . ,

where qk → 0 as k →∞. This estimate proves the superlinear convergence rate:

lim
k→∞

rk+1

rk
= 0.

Lemma 2 is an auxiliary lemma which is used inside the proofs of all the other lemmas. Lemma 3
is used to prove Lemma 4, which in turn is used to prove Lemma 5. The proof of Theorem 1 itself
is placed at the end of this section.

A.2 Main estimate

The next lemma provides a recurrent estimate for the sequence of residuals r̃k := ‖xk − x∗‖2. The
proof of this lemma is almost identical to the proof of the quadratic convergence rate of the classic
Newton method.

Lemma 1 (main estimate). Assume the conditions of theorem 1 hold. Then the sequence of residuals
satisfies the following recurrent inequality:

r̃k ≤
M

2µn
(r̃2k−1 + r̃2k−2 + · · ·+ r̃2k−n), k = n, n+ 1, (6)

Proof. Let k ≥ n− 1. To simplify formulas, let us introduce the following notation:

Ak :=
1

n

n∑
i=1

∇2fi(v
i
k) + µI.

Since the step size is unit, αk ≡ 1, then, according to (4), the next iterate xk+1 is exactly the
minimizer of the model mk: xk+1 ≡ x̄k. Using formulas (2) and (3), we obtain the following
expression for the next iterate:

xk+1 = A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)

)
.

6

By the first-order optimality condition, 0 = ∇f(x∗) = (1/n)
∑n
i=1∇fi(x∗)+µx∗, so we can write

xk+1 − x∗ = A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)− 1

n

n∑
i=1

∇2fi(v
i
k)x∗ − µx∗

)

= A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)(vik − x∗)−

1

n

n∑
i=1

[
∇fi(vik)−∇fi(x∗)

])
.

For the gradient difference we use the Taylor formula:

∇fi(vik)−∇fi(x∗) =

∫ 1

0

∇2fi(tv
i
k + (1− t)x∗)(vik − x∗)dt.

Then

xk+1 − x∗ =
A−1k
n

n∑
i=1

∫ 1

0

[
∇2fi(v

i
k)−∇2fi(tv

i
k + (1− t)x∗)

]
(vik − x∗)dt.

Taking the norms and using the Lipschitz condition, we get

r̃k+1 ≤
∥∥A−1k ∥∥2 M2n

n∑
i=1

∥∥vik − x∗∥∥22 . (7)

Since all the functions fi are convex, their Hessians ∇2fi(v
i
k) are positive-semidefinite. Therefore,

‖Ak‖2 ≥ µ and
∥∥A−1k ∥∥ ≤ 1

µ
. (8)

Also, because we use the cyclic order of component selection, we have
n∑
i=1

∥∥vik − x∗∥∥22 = r̃2k + r̃2k−1 + · · ·+ r̃2k−n+1. (9)

Plugging (8) and (9) into (7), we obtain the estimate

r̃k+1 ≤
M

2µn
(r̃2k + r̃2k−1 + · · ·+ r̃2k−n+1),

which is the same as (6) to within a shift of indices.

A.3 Auxiliary lemmas

In the rest of the proof we analyze the following recurrent sequence:

rk :=
C

n
(r2k−1 + r2k−2 · · ·+ r2k−n), k = n, n+ 1, . . . , (10)

where C := M/(2µ) > 0 and rk := ‖xk − x∗‖2 , k = 0, . . . , n − 1. According to Lemma 1, this
sequence is an upper bound for the sequence of residuals: ‖xk − x∗‖2 ≤ rk. Each of the following
lemmas proves one little fact about the sequence {rk}. Almost in every lemma we assume that
the initial elements r0, r1, . . . , rn−1 of {rk} are small enough. This assumption corresponds to
the assumption about locality (i.e. that we initialize the centers in NIM sufficiently close to the
optimum).

Lemma 2 (basic estimate). The sequence {rk} satisfies the following two recurrent inequalities:

C

n
max{rk−1, rk−2, . . . , rk−n}2 ≤ rk ≤ C max{rk−1, rk−2, . . . , rk−n}2.

Proof. Follows from the definition (10) and the fact that

max{r2k−1, r2k−2, . . . , r2k−n} = max{rk−1, rk−2, . . . , rk−n}2.

7

Lemma 3 (boundedness). If the initial elements of the sequence {rk} are bounded,

max{r0, r1, . . . , rn−1} ≤
1

C
√
n
,

then all the elements of this sequence are bounded:

rk ≤
1

C
√
n
, k = 0, 1, 2, (11)

Proof. By induction. Assume bound (11) is true for all the indices from 0 to k − 1 inclusive. Let
us prove that this bound is also true for index k. Using Lemma 2 about the basic estimate and the
induction hypothesis, we get

rk ≤ C max{rk−1, rk−2, . . . , rk−n}2 ≤ C
1

C2n
=

1

Cn
≤ 1

C
√
n
.

Lemma 4 (block quadratic convergence). Let the initial elements of the sequence {rk} be bounded:

max{r0, r1, . . . , rn−1} ≤
1

C
√
n
.

Then the sequence of the maximums over successive n elements converges quadratically:

max{rk−n+1, rk−n+2, . . . , rk} ≤ C max{rk−1, rk−2, . . . , rk−n}2, k = n, n+ 1, (12)

Proof. Let us fix a number k ≥ n. From Lemma 3 about boundedness it follows that

max{Cr2k−1, Cr2k−2, . . . , Cr2k−n} ≤ C
1

C
√
n

max{rk−1, rk−2, . . . , rk−n}

≤ max{rk−1, rk−2, . . . , rk−n}.
(13)

According to Lemma 2 about the basic estimate,

rk ≤ C max{rk−1, rk−2, . . . , rk−n}2. (14)

Using inequalities (14) and (13), we obtain

rk+1 ≤ C max {rk, rk−1, . . . , rk−n+1}2

≤ C max
{

max
{
Cr2k−1, Cr

2
k−2, . . . , Cr

2
k−n

}
, rk−1, . . . , rk−n+1

}2
≤ C max {rk−1, rk−2, . . . , rk−n}2 .

(15)

Now, combining inequalities (15), (14) and (13), we have

rk+2 ≤ C max {rk+1, rk, rk−1 . . . , rk−n+2}2

≤ C max
{

max
{
Cr2k−1, . . . , Cr

2
k−n

}
,max

{
Cr2k−1, . . . , Cr

2
k−n

}
, rk−1, . . . , rk−n+2

}2
≤ C max {rk−1, rk−2, . . . , rk−n}2 .

Applying the same procedure successively for rk+3, . . . , rk+n−1, we get (12).

Lemma 5 (monotonicity). Let the initial elements of the sequence {rk} be bounded:

max{r0, r1, . . . , rn−1} ≤
1

C
√
n
.

Then, starting from k = 2n, the sequence {rk} decreases monotonically:

rk+1 ≤ rk, k = 2n, 2n+ 1,

Proof. Let us fix a number k ≥ 2n. Note that by the definition (10) of the sequence {rk} the
inequality rk+1 ≤ rk is equivalent to the inequality rk ≤ rk−n. Therefore we will prove that

8

rk ≤ rk−n. Applying Lemma 2 about the basic estimate and Lemma 4 about block quadratic
convergence, we have

rk ≤ C max{rk−1, rk−2, . . . , rk−n}2

≤ C
(
C max{rk−n−1, rk−n−2, . . . , rk−2n}2

)2
= C3 max{rk−n−1, rk−n−2, . . . , rk−2n}4.

Applying Lemma 2 about the basic estimate, we can write

rk−n ≥
C

n
max{rk−n−1, rk−n−2, . . . , rk−2n}2.

Comparing the right-hand sides of the last two inequalities and using Lemma 3 about boundedness,
we obtain the inequality rk ≤ rk−n.

Lemma 6 (n-step quadratic convergence). Let the initial elements of the sequence {rk} be bounded:

max{r0, r1, . . . , rn−1} ≤
1

C
√
n
.

Then the convergence rate of this sequence is n-step quadratic:

rk ≤ Cr2k−n, k = 3n, 3n+ 1, (16)

Proof. Follows from Lemma 2 about the basic estimate and Lemma 5 about monotonicity.

Lemma 7 (linear convergence rate). Let the initial elements of the sequence {rk} be bounded:

max{r0, r1, . . . , rn−1} ≤
1

C
√
n
.

Then the convergence rate of this sequence is at least linear4:

rk+1 ≤
(

1− n− 1

n2

)
rk, 3n, 3n+ 1,

Proof. Let us fix a number k ≥ 3n. From Lemma 6 about n-step quadratic convergence and
Lemma 3 about boundedness we have

rk ≤ (Crk−n)rk−n ≤
rk−n√
n
.

Then
rk+1 =

C

n
(r2k + r2k−1 + · · ·+ r2k−n+1)

≤ C

n

(
r2k−n
n

+ r2k−1 + · · ·+ r2k−n+1

)
=
C

n

(
r2k−n
n

+ r2k−1 + · · ·+ r2k−n+1 + r2k−n − r2k−n
)

= rk −
n− 1

n2
Cr2k−n.

Combining this estimate with inequality (16), we get the claimed statement:

rk+1 ≤ rk −
n− 1

n2
rk =

(
1− n− 1

n2

)
rk.

Lemma 8 (improving the constant). Assume that, starting from number k0, the sequence {rk}
decays linearly to zero with constant c0 ∈ (0, 1):

rk+1 ≤ c0rk, k = k0, k0 + 1, (17)

Then, starting from number k0 + n, the constant c0 can be replaced with its square:

rk+1 ≤ c20rk, k = k0 + n, k0 + n+ 1,

4Here we assume that n ≥ 2. When n = 1, the statement follows from the definition (10).

9

Proof. Let us fix a number k ≥ k0 + n. Using the definition (10) of {rk} and inequality (17), we
have

rk+1 =
C

n
(r2k + r2k−1 + · · ·+ r2k−n+1)

≤ C

n
(c20r

2
k−1 + c20r

2
k−2 + · · ·+ c20r

2
k−n)

= c20
C

n
(r2k−1 + r2k−2 + · · ·+ r2k−n)

= c20rk.

A.4 Proof of the theorem

Proof. According to Lemma 1 about the main estimate, the sequence of residuals ‖xk − x∗‖2
is bounded above by the sequence {rk} defined in (10) with C := M/(2µ) and rk :=
‖xk − x∗‖2 , k = 0, . . . , n − 1. The statement about the n-step quadratic convergence rate is
proved in Lemma 6. Let us prove the statement about the superlinear convergence rate5. Using
Lemma 7 about linear convergence and Lemma 8 about improving the constant, we can write the
following sequence of estimates:

rk+1

rk
≤ q, k = 3n, 3n+ 1, . . . ,

rk+1

rk
≤ q2, k = 4n, 4n+ 1, . . . ,

rk+1

rk
≤ q4, k = 5n, 5n+ 1, . . . ,

rk+1

rk
≤ q8, k = 6n, 6n+ 1, . . . ,

. . .

where q := 1− (n− 1)/n2. Combining all these estimates together, we get
rk+1

rk
≤ q2

bk/ne−3

, k = 3n, 3n+ 1,

Since the right-hand side in this inequality converges to zero as k →∞, then rk+1/rk also converges
to zero as k →∞.

B Global convergence rate: proof

In this section we prove Theorem 2 about the global convergence rate of NIM.

B.1 Outline of the proof and notation

Note that according to (4), (2) and (3) we can write the step of NIM as follows:
xk+1 = xk + αpk,

where pk := x̄k − xk is the search direction given by:

pk = A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)(vik − xk)− 1

n

n∑
i=1

∇fi(vik)− µxk

)
, (18)

where, for convenience, we define Ak := (1/n)
∑n
i=1∇2fi(v

i
k) + µI .

To analyze NIM, we view it as a perturbed scaled gradient method:
xk+1 = xk + αpSGk + αek, (19)

where we use the same matrix Ak to scale the gradient, pSGk := −A−1k ∇f(xk), and ek := pk − pSGk
is the error in the approximation of pSGk by pk.

The most important step is to prove that the norm of the error ek can be bounded by a term propor-
tional to the step size α and the norms of gradients at previous points. This is done in Section B.3.

5Here we assume that n ≥ 2. When n = 1, the statement follows from n-step quadratic convergence.

10

B.2 Auxiliary facts

In this section we state several useful inequalities that we will use throughout the rest of the proof.

Since Ak is a symmetric positive definite matrix and λmin(Ak) ≥ µ, we can write∥∥A−1k ∥∥2 ≤ 1

µ
. (20)

and ∥∥pSGk ∥∥2 ≤ ∥∥A−1k ∥∥2 ‖∇f(xk)‖2 ≤
1

µ
‖∇f(xk)‖2 . (21)

Lemma 9. For a twice continuously differentiable strongly convex function f : Rd → R with
constant µ > 0 we have the following inequality for any x ∈ Rd:

‖x− x∗‖2 ≤
1

µ
‖∇f(x)‖2 , (22)

where x∗ is the optimum of f .

Proof. Take any x, y ∈ Rd. Using the Taylor formula, we obtain

∇f(x)−∇f(y) = ∇2f(z)(x− y),

where z ∈ [x, y]. By the strong convexity of f , for any z ∈ Rd the matrix ∇2f(z) is symmetric
positive definite with λmin(∇2f(z)) ≥ µ. Therefore,

‖∇f(x)−∇f(y)‖2 ≥ µ ‖x− y‖2 .

Now it remains to set y = x∗ and divide both sides by µ.

Lemma 10. Let f : Rd → R be a continuously differentiable strongly convex function f with
constant µ > 0 and Lipschitz-continuous gradient with constant L > 0. Then for any x ∈ Rd we
have:

2µ[f(x)− f(x∗)] ≤ ‖∇f(x)‖22 ≤ 2L[f(x)− f(x∗)], (23)
where x∗ is the optimum of f .

Proof. From strong convexity and Lipschitz-continuity of the gradient, for any x, y ∈ Rd:

f(x) +∇f(x)>(y − x) +
µ

2
‖y − x‖22 ≤ f(y) ≤ f(x) +∇f(x)>(y − x) +

L

2
‖y − x‖22 .

Taking the minimum over y, we get:

f(x)− 1

2µ
‖∇f(x)‖22 ≤ f(x∗) ≤ f(x)− 1

2L
‖∇f(x)‖22 ,

which coincides with (23) after rearranging.

Note that in the conditions of Theorem 2 the function f has Lipschitz-continuous gradient with
constant L := Lf + µ.

B.3 Bounding the error norm

Our derivation of the bound on the error norm is based on the recent work of Gurbuzbalaban et
al. [1]. The main result of this section is in Lemma 12. To prove it, we first state an auxiliary lemma.
Lemma 11. The error norm satisfies the following two bounds, regardless of the way the sequence
{xk} is constructed:

‖ek‖2 ≤
2Lf
µ

max
j=k−n+1,...,k−1

‖xj − xk‖2 (24)

and
‖ek‖2 ≤

4Lf
µ2

max
j=k−n+1,...,k

‖∇f(xj)‖2 (25)

11

Proof. Plugging (18) into the definition of ek, we have

ek = A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)(vik − xk)− 1

n

n∑
i=1

[
∇fi(vik)−∇fi(xk)

])
.

Then,

‖ek‖2 ≤
∥∥A−1k ∥∥2

(
1

n

n∑
i=1

∥∥∇2fi(v
i
k)
∥∥
2

∥∥vik − xk∥∥2 +
1

n

n∑
i=1

∥∥∇fi(vik)−∇fi(xk)
∥∥
2

)
.

As a bound on
∥∥A−1k ∥∥2 we use (20). Next, by the Lipschitz-continuity of ∇fi, we have that∥∥∇2fi(v

i
k)
∥∥
2
≤ Lf and

∥∥∇fi(vik)−∇fi(xk)
∥∥
2
≤ Lf

∥∥vik − xk∥∥2. Therefore,

‖ek‖2 ≤
2Lf
µn

n∑
i=1

∥∥vik − xk∥∥2 .
Since the order of component selection is cyclic,

n∑
i=1

∥∥vik − xk∥∥2 =

k∑
j=k−n+1

‖xj − xk‖2 ,

and

‖ek‖2 ≤
2Lf
µn

k∑
j=k−n+1

‖xj − xk‖2 ≤
2Lf
µ

max
j=k−n+1,...,k−1

‖xj − xk‖2 .

Thus, inequality (24) is proved.

To prove inequality (25) we use the triangle inequality inside the maximum in (24), getting

‖ek‖2 ≤
4Lf
µ

max
j=k−n+1,...,k

‖xj − x∗‖2

and then apply (22).

Note that in Lemma 11 we did not use the way (19) the sequence {xk} is constructed. As we show
in a moment, by using this extra information in Lemma 11, we can obtain a bound similar to (25),
but proportional to the step length α.
Lemma 12. The error norm can be bounded as follows:

‖ek‖2 ≤
8L2(n− 1)α

µ3
max

j=k−2n+2,...,k−1
‖∇f(xj)‖2 . (26)

Proof. We start with (24):

‖ek‖2 ≤
2Lf
µ

max
j=k−n+1,...,k−1

‖xj − xk‖2 .

By the triangle inequality, for any j = k − n+ 1, . . . , k − 1, we get

‖xj − xk‖2 =

∥∥∥∥∥∥
k−1∑
t=j

[xt − xt+1]

∥∥∥∥∥∥
2

≤
k−1∑
t=j

‖xt − xt+1‖2 .

Therefore,

‖ek‖2 ≤
2Lf
µ

k−1∑
t=k−n+1

‖xt − xt+1‖2 ≤
2Lf (n− 1)

µ
max

t=k−n+1,...,k−1
‖xt − xt+1‖2 . (27)

Using (19), we have
‖xt − xt+1‖2 ≤ α

(∥∥pSGt ∥∥2 + ‖et‖2
)
.

12

To bound the first term, we use (21). For the second term we use (25):

‖et‖2 ≤
4Lf
µ2

max
j=t−n+1,...,t−1

‖∇f(xj)‖2 .

Therefore,

‖xt − xt+1‖2 ≤
(4Lf + µ)α

µ2
max

j=t−n+1,...,t
‖∇f(xj)‖2 ≤

4Lα

µ2
max

j=t−n+1,...,t
‖∇f(xj)‖2 .

Plugging this bound into (27), we get

‖ek‖2 ≤
8LfL(n− 1)α

µ3
max

j=k−2n+2,...,k−1
‖∇f(xj)‖2

≤ 8L2(n− 1)α

µ3
max

j=k−2n+2,...,k−1
‖∇f(xj)‖2 .

B.4 Proof of the theorem

Proof. Using the Lipschitz-continuity of the gradient and iteration (19), we get

f(xk+1)− f(xk) ≤ ∇f(xk)>(xk+1 − xk) +
L

2
‖xk+1 − xk‖22

= α∇f(xk)>pSGk + α∇f(xk)>ek

+
Lα2

2

∥∥pSGk ∥∥22 + Lα2(pSGk)>ek +
Lα2

2
‖ek‖22 .

Now we bound each term above in terms of the norms of previous gradients. The first term is a
quadratic form whose matrix Ak is symmetric positive definite with λmax(Ak) ≤ L. Therefore we
can write the following bound:

α∇f(xk)>pSGk = −α∇f(xk)>A−1k ∇f(xk) ≤ −α
L
‖∇f(xk)‖22 .

For the second term we use the Cauchy-Schwarz inequality and bound (26):

α∇f(xk)>ek ≤ α ‖∇f(xk)‖2 ‖ek‖2 ≤
8L2(n− 1)α2

µ3
max

j=k−2n+2,...,k
‖∇f(xj)‖22 .

For the third term we use (21):

Lα2

2

∥∥pSGk ∥∥22 ≤ Lα2

2µ2
‖∇f(xk)‖22 .

For the fourth term we use the Cauchy-Schwarz inequality and bounds (21) and (26):

Lα2(pSGk)>ek ≤ Lα2
∥∥pSGk ∥∥2 ‖ek‖2 ≤ 8L3(n− 1)α3

µ4
max

j=k−2n+2,...,k
‖∇f(xj)‖22 .

For the fifth term we use (26):

Lα2

2
‖ek‖22 ≤

32L5(n− 1)2α4

µ6
max

j=k−2n+2,...,k−1
‖∇f(xj)‖22 .

Combining these five bounds together, we get:

f(xk+1)− f(xk) ≤ −α
L
‖∇f(xk)‖22 +

Lα2

2µ2
‖∇f(xk)‖22

+
8L2(n− 1)α2

µ3

(
1 +

Lα

µ
+

4L3(n− 1)α2

µ3

)
max

j=k−2n+2,...,k
‖∇f(xj)‖22 .

Now we introduce Vk := f(xk)− f(x∗) and replace all the gradients in the above expression with
the corresponding Vj using (23). This leads us to the following recurrent inequality:

Vk+1 ≤ p(α)Vk + q(α) max
j=k−2n+2,...,k

Vt

13

where
p(α) := 1− 2κ−1α+ κ2α2,

q(α) := 16κ3(n− 1)α2
[
1 + κα+ 4κ3(n− 1)α2

]
.

and κ := L/µ ≥ 1 is the condition number.

According to Lemma 3.2 of [1], to finish the proof, we need to find α such that p(α) + q(α) < 1.
This will guarantee the linear convergence of Vk with constant c = (p+ q)1/(1+2(n−1)).

First, assume α ≤ α0 for some α0 that we will choose later. Then

p(α) + q(α) ≤ 1− 2κ−1α+ κ2α2 + 16κ3(n− 1)α2(1 + δ) =: hδ(α),

where δ := 1 + κα0 + 4κ3(n− 1)α2
0. The condition hδ(α) < 1 is equivalent to

α < 2κ−3(1 + 16κ(n− 1)(1 + δ))−1.

Let us choose α0 := κ−4(n− 1)−1/8. Then

1 + δ = 1 +
κ−3(n− 1)−1

8
+
κ−5(n− 1)−1

16
≤ 1 +

1

8
+

1

16
=

19

16

and
2κ−3(1 + 16κ(n− 1)(1 + δ))−1 ≥ 2κ−3(1 + 19κ(n− 1))−1 =: ᾱ.

Note that ᾱ ≤ α0. Therefore, for all α < ᾱ we will have p(α) + q(α) ≤ hδ(α) ≤ h(α) < 1 with

h(α) := 1− 2κ−1α+ κ2(1 + 19κ(n− 1))α2.

References

[1] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the Convergence Rate of Incremental Ag-
gregated Gradient Algorithms. ArXiv e-prints, June 2015.

14

	Introduction
	Method NIM
	Convergence analysis
	Implementation details
	Experiments
	Local convergence rate: proof
	Outline of the proof
	Main estimate
	Auxiliary lemmas
	Proof of the theorem

	Global convergence rate: proof
	Outline of the proof and notation
	Auxiliary facts
	Bounding the error norm
	Proof of the theorem

