A Superlinearly-Convergent Proximal Newton-Type Method for the Optimization of Finite Sums

Anton Rodomanov1,2 Dmitry Kropotov2,3

1Higher School of Economics
2Bayesian Methods Research Group
3Lomonosov Moscow State University

Moscow, Russia

22 June 2016
International Conference on Machine Learning (ICML-2016), New York, USA
Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right]$$

Assumptions:
- Each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ϕ is strongly convex

Examples:
- Linear regression
- Logistic regression
- CRF etc.
- n is very large
Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right]$$

Assumptions:
- each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ϕ is strongly convex
Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right]$$

Assumptions:
- each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ϕ is strongly convex

Examples: linear regression, logistic regression, CRF etc.
Consider the minimization of the composite finite average:

$$\min_{x \in \mathbb{R}^d} \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right]$$

Assumptions:
- each f_i is twice-continuously differentiable and convex
- h is a general convex function (but simple)
- ϕ is strongly convex

Examples: linear regression, logistic regression, CRF etc.

- n is very large
Motivation

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of \(n \):
Motivation

We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of \(n \):

- **Stochastic methods** for \(\min_x \{ \mathbb{E}_z[f(x; z)] \} = \min_x \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\} \):
 - **Examples**: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - **Iteration**: \(x_{k+1} = x_k - \alpha_k B_k \nabla f_k(x_k) \).
 - **Convergence rate**: sublinear, usually \(O(1/k) \).
Motivation

We are interested in incremental methods [Bertsekas, 2011] whose iteration cost is independent of n:

- **Stochastic methods** for $\min_x \{ \mathbb{E}_z[f(x; z)] \} = \min_x \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - **Examples:** SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - **Iteration:** $x_{k+1} = x_k - \alpha_k B_k \nabla f_k(x_k)$.
 - **Convergence rate:** sublinear, usually $O(1/k)$.

- **Methods** for $\min_x \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - **Examples:** SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - **Main idea:** variance reduction.
 - **Convergence rate:** linear, $O(c^k)$.
We are interested in **incremental methods** [Bertsekas, 2011] whose iteration cost is independent of n:

- **Stochastic methods** for $\min_x \{ \mathbb{E}_z [f(x; z)] \} = \min_x \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - **Examples**: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - **Iteration**: $x_{k+1} = x_k - \alpha_k B_k \nabla f_i(x_k)$.
 - **Convergence rate**: sublinear, usually $O(1/k)$.

- Methods for $\min_x \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - **Examples**: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - **Main idea**: variance reduction.
 - **Convergence rate**: linear, $O(c^k)$.

Goal: an incremental method with a superlinear convergence rate.
Main contributions

Our main contributions:

- New method: Newton-type Incremental Method (NIM)
- Theorem establishing superlinear convergence of NIM
NIM: Idea

Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right] \).
NIM: Idea

Problem: \(\min \limits_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right] \).

- **Build the second-order Taylor approximation of each** \(f_i \):
 \(f_i(x) \approx m^i_k(x) := f_i(v^i_k) + \nabla f_i(v^i_k)^\top(x - v^i_k) + \frac{1}{2}(x - v^i_k)^\top \nabla^2 f_i(v^i_k)(x - v^i_k) \).
NIM: Idea

Problem: \[\min \phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \].

- Build the second-order Taylor approximation of each \(f_i \):
 \[f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i)(x - v_k^i). \]

- Then \(\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^{n} m_k^i(x) + h(x) \).
NIM: Idea

Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right] \).

- Build the second-order Taylor approximation of each \(f_i \):
 \[
 f_i(x) \approx m^i_k(x) := f_i(v^i_k) + \nabla f_i(v^i_k)^\top (x - v^i_k) + \frac{1}{2} (x - v^i_k)^\top \nabla^2 f_i(v^i_k)(x - v^i_k).
 \]

- Then \(\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^{n} m^i_k(x) + h(x) \).

- Find the minimizer of the model \(\bar{x}_k := \arg\min_x m_k(x) \).

- Choose next iterate: \(x_{k+1} = x_k + \alpha(\bar{x}_k - x_k) \).
Problem: \(\min_x \phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \).

- Build the **second-order Taylor approximation** of each \(f_i \):
 \[
 f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i) (x - v_k^i).
 \]

- Then \(\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^{n} m_k^i(x) + h(x) \).

- Find the **minimizer of the model** \(\bar{x}_k := \arg\min_x m_k(x) \).

- Choose next iterate: \(x_{k+1} = x_k + \alpha (\bar{x}_k - x_k) \).

- **(Standard Newton method)** \(v_k^i = x_k \) for all \(i = 1, \ldots, n \).
Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right] \).

- Build the second-order Taylor approximation of each \(f_i \):
 \[
 f_i(x) \approx m_k^i(x) := f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i)(x - v_k^i).
 \]

- Then \(\phi(x) \approx m_k(x) := \frac{1}{n} \sum_{i=1}^{n} m_k^i(x) + h(x) \).

- Find the minimizer of the model \(\bar{x}_k := \text{argmin}_x m_k(x) \).

- Choose next iterate: \(x_{k+1} = x_k + \alpha(\bar{x}_k - x_k) \).

- (Standard Newton method) \(v_k^i = x_k \) for all \(i = 1, \ldots, n \).

- (NIM) Update only one \(v_k^i \): choose \(i_k \in \{1, \ldots, n\} \) and set
 \[
 v_{k+1}^i := \begin{cases}
 x_{k+1} & \text{if } i = i_k, \\
 v_k^i & \text{otherwise}.
 \end{cases}
 \]

- Iteration cost is independent of \(n \).
Recall:

\[m^i_k(x) = f_i(v^i_k) + \nabla f_i(v^i_k)^\top (x - v^i_k) + \frac{1}{2}(x - v^i_k)^\top \nabla^2 f_i(v^i_k)(x - v^i_k) \]

\[m_k(x) = \frac{1}{n} \sum_{i=1}^{n} m^i_k(x) + h(x) \]
NIM: Model update

\[m_k(x) = \frac{1}{n} \sum_{i=1}^{n} \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i)(x - v_k^i) \right] + h(x). \]
NIM: Model update

\[m_k(x) = \frac{1}{n} \sum_{i=1}^{n} \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i)(x - v_k^i) \right] + h(x). \]

Note: \(m_k \) is a (composite) quadratic,

\[m_k(x) = (g_k - u_k)^\top x + \frac{1}{2} x^\top H_k x + h(x) + \text{const}, \]

and determined only by the following three quantities:

\[H_k := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v_k^i), \quad u_k := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v_k^i)v_k^i, \quad g_k := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v_k^i). \]
\[m_k(x) = \frac{1}{n} \sum_{i=1}^{n} \left[f_i(v_k^i) + \nabla f_i(v_k^i)^\top (x - v_k^i) + \frac{1}{2} (x - v_k^i)^\top \nabla^2 f_i(v_k^i)(x - v_k^i) \right] + h(x). \]

Note: \(m_k \) is a (composite) quadratic,

\[m_k(x) = (g_k - u_k)^\top x + \frac{1}{2} x^\top H_k x + h(x) + \text{const}, \]

and determined only by the following three quantities:

\[H_k := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v_k^i), \quad u_k := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v_k^i)v_k^i, \quad g_k := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v_k^i). \]

Since only one \(v_k^i \) is updated at every iteration, we have for \(i = i_k \)

\[H_{k+1} = H_k + \frac{1}{n} \left[\nabla^2 f_i(v_{k+1}^i) - \nabla^2 f_i(v_k^i) \right] \]

\[u_{k+1} = u_k + \frac{1}{n} \left[\nabla^2 f_i(v_{k+1}^i)v_{k+1}^i - \nabla^2 f_i(v_k^i)v_k^i \right] \]

\[g_{k+1} = g_k + \frac{1}{n} \left[\nabla f_i(v_{k+1}^i) - \nabla f_i(v_k^i) \right]. \]
NIM: Algorithm

Input: \(x_0, \ldots, x_{n-1} \in \mathbb{R}^d \): initial points; \(\alpha > 0 \): step length.

Initialize model: \(v^i := x_{i-1} \) for \(i = 1, \ldots, n \) and

\[
H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)
\]

for \(k \geq n - 1 \) do

[Rest of the algorithm text continues here]
NIM: Algorithm

Input: \(x_0, \ldots, x_{n-1} \in \mathbb{R}^d \): initial points; \(\alpha > 0 \): step length.

Initialize model: \(v^i := x_{i-1} \) for \(i = 1, \ldots, n \) and

\[
H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)
\]

for \(k \geq n - 1 \) do

Compute minimizer: \(\bar{x}_k := \arg\min_x \left[(g - u)^T x + \frac{1}{2} x^T H x + h(x) \right] \)

Make a step: \(x_{k+1} := x_k + \alpha (\bar{x}_k - x_k) \)
NIM: Algorithm

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for $i = 1, \ldots, n$ and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)$$

for $k \geq n - 1$ do

Compute minimizer: $\bar{x}_k := \arg\min_x [(g - u)^T x + \frac{1}{2} x^T H x + h(x)]$

Make a step: $x_{k+1} := x_k + \alpha (\bar{x}_k - x_k)$

Update model for $i := (k + 1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$
$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v^i)v^i \right]$$
$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$
$$v^i := x_{k+1}$$

end for
NIM: Algorithm

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for $i = 1, \ldots, n$ and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)$$

for $k \geq n - 1$ do

Compute minimizer: $\bar{x}_k := \text{argmin}_x [(g - u)^\top x + \frac{1}{2} x^\top H x + h(x)]$

Make a step: $x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)$

Update model for $i := (k + 1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$
$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v^i)v^i \right]$$
$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$
$$v^i := x_{k+1}$$

end for

Note: H, u, g and v^i are kept in memory.

Required memory: $\mathcal{O}(d^2 + nd)$.

A. Rodomanov, D. Kropotov
Superlinear Incremental Method NIM
22 June 2016 7 / 16
Suppose $\nabla^2 f_i$ are Lipschitz-continuous with constant M_f. Assume x^* is a minimizer of ϕ with $rac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(x^*) \succeq \mu_f I \succ 0$, and all the initial points are close enough to x^*: $\|x_i - x^*\| \leq R$ for $0 \leq i \leq n - 1$. Then the sequence of iterates $\{x_k\}$ of NIM with $\alpha \equiv 1$ converges to x^* at an R-superlinear rate, i.e. there exist $\{z_k\}$ and $\{q_k\}$ such that for $k \geq n$

\begin{align*}
\|x_k - x^*\| &\leq z_k, \\
 z_{k+1} &\leq q_k z_k, \\
 q_k &\to 0,
\end{align*}

where $R := \mu_f 2 M_f$, $q_k := \left(1 - \frac{3}{4} n \right)^{2 \lceil k / n \rceil - 1}$. More precisely, the rate of convergence is n-step quadratic:

$z_{k+n} \leq M_f \mu_f z_k^2$.
Suppose $\nabla^2 f_i$ are Lipschitz-continuous with constant M_f. Assume x^* is a minimizer of ϕ with $\frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(x^*) \succeq \mu_f I \succ 0$, and all the initial points are close enough to x^*: $\|x_i - x^*\| \leq R$ for $0 \leq i \leq n - 1$.

Then the sequence of iterates $\{x_k\}$ of NIM with $\alpha \equiv 1$ converges to x^* at an R-superlinear rate, i.e. there exist $\{z_k\}$ and $\{q_k\}$ such that for $k \geq n$

$$\|x_k - x^*\| \leq z_k,$$

$$z_{k+1} \leq q_k z_k,$$

$q_k \to 0$,

where

$$R := \frac{\mu_f}{2M_f}, \quad q_k := \left(1 - \frac{3}{4n}\right)^{2[k/n]-1}.$$

More precisely, the rate of convergence is n-step quadratic:

$$z_{k+n} \leq \frac{M_f}{\mu_f} z_k^2.$$
Convergence rate (global)

Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x) \right] \).

Assume \(h(x) := \frac{\mu}{2} \|x\|^2 \).

Theorem

Denote the condition number of \(\phi \) as \(\kappa_\phi := (L_f + \mu)/\mu \) and the minimizer of \(\phi \) as \(x^* \). Then, for any initial points \(x_0, \ldots, x_{n-1} \), NIM with a constant step length \(\alpha \equiv \kappa_\phi^{-3}(1 + 19\kappa_\phi(n-1))^{-1} \) converges to \(x^* \) at a linear rate:

\[
\phi(x_k) - \phi(x^*) \leq c^k [\phi(x_0) - \phi(x^*)],
\]

where

\[
c := (1 - \kappa_\phi^{-4}(1 + 19\kappa_\phi(n-1))^{-1})^{\frac{1}{1+2(n-1)}}.
\]

N.B.: This result is qualitative.
NIM: Model minimization?

Input: \(x_0, \ldots, x_{n-1} \in \mathbb{R}^d\): initial points; \(\alpha > 0\): step length.

Initialize model: \(v^i := x_{i-1} \) for \(i = 1, \ldots, n\) and

\[
H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)
\]

for \(k \geq n - 1\) do

Compute minimizer: \(\bar{x}_k := \text{argmin}_x \left[(g - u)^\top x + \frac{1}{2}x^\top Hx + h(x)\right]\)

Make a step: \(x_{k+1} := x_k + \alpha(\bar{x}_k - x_k)\)

Update model for \(i := (k + 1) \mod n + 1\) (cyclic order):

\[
\begin{align*}
H &:= H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i)\right] \\
u &:= u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v^i)v^i\right] \\
g &:= g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i)\right] \\
v^i &:= x_{k+1}
\end{align*}
\]

end for

If \(h \equiv 0\), then \(\bar{x}_k = H^{-1}(u - g)\). Otherwise, use an iterative method for finding \(\bar{x}_k\).

Idea: \(\bar{x}_k\) may be computed inexactly (as in inexact Newton methods).
NIM: Model minimization?

Input: \(x_0, \ldots, x_{n-1} \in \mathbb{R}^d\): initial points; \(\alpha > 0\): step length.

Initialize model: \(v^i := x_{i-1}\) for \(i = 1, \ldots, n\) and
\[
H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)
\]

for \(k \geq n - 1\) do

Compute minimizer: \(\bar{x}_k := \arg\min_x [(g - u)^T x + \frac{1}{2} x^T H x + h(x)]\)

Make a step: \(x_{k+1} := x_k + \alpha (\bar{x}_k - x_k)\)

Update model for \(i := (k + 1) \mod n + 1\) (cyclic order):
\[
H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]
\]
\[
u^i := x_{k+1} - \frac{1}{n} \left[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v^i)v^i \right]
\]
\[
g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]
\]
\[
v^i := x_{k+1}
\]

end for

- If \(h \equiv 0\), then \(\bar{x}_k = H^{-1}(u - g)\).
NIM: Model minimization?

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for $i = 1, \ldots, n$ and

$$H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i) v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)$$

for $k \geq n - 1$ do

Compute minimizer: $\bar{x}_k := \arg\min_x \left[(g - u)^T x + \frac{1}{2} x^T H x + h(x) \right]$

Make a step: $x_{k+1} := x_k + \alpha (\bar{x}_k - x_k)$

Update model for $i := (k + 1) \mod n + 1$ (cyclic order):

$$H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right]$$

$$u := u + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) x_{k+1} - \nabla^2 f_i(v^i) v^i \right]$$

$$g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right]$$

$$v^i := x_{k+1}$$

end for

- If $h \equiv 0$, then $\bar{x}_k = H^{-1}(u - g)$.
- Otherwise, use an iterative method for finding \bar{x}_k.
NIM: Model minimization?

Input: $x_0, \ldots, x_{n-1} \in \mathbb{R}^d$: initial points; $\alpha > 0$: step length.

Initialize model: $v^i := x_{i-1}$ for $i = 1, \ldots, n$ and

\[
H := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i), \quad u := \frac{1}{n} \sum_{i=1}^{n} \nabla^2 f_i(v^i)v^i, \quad g := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i)
\]

for $k \geq n - 1$ do

Compute minimizer: $\tilde{x}_k := \arg\min_x \left[(g - u)^T x + \frac{1}{2} x^T H x + h(x) \right]$

Make a step: $x_{k+1} := x_k + \alpha(\tilde{x}_k - x_k)$

Update model for $i := (k + 1) \mod n + 1$ (cyclic order):

\[
H := H + \frac{1}{n} \left[\nabla^2 f_i(x_{k+1}) - \nabla^2 f_i(v^i) \right],
\]

\[
u^i := \frac{1}{n} \left[\nabla^2 f_i(x_{k+1})x_{k+1} - \nabla^2 f_i(v^i)v^i \right] \]

\[g := g + \frac{1}{n} \left[\nabla f_i(x_{k+1}) - \nabla f_i(v^i) \right] \]

end for

- If $h \equiv 0$, then $\tilde{x}_k = H^{-1}(u - g)$.
- Otherwise, use an iterative method for finding \tilde{x}_k.
- **Idea:** \tilde{x}_k may be computed inexactlty (as in inexact Newton methods).
NIM: Inexact model minimization

Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right] \).

(Assume \(h \equiv 0 \) for simplicity.)

Model: \(m_k(x) = (g_k - u_k)^\top x + \frac{1}{2} x^\top H_k x + \text{const} \).

NIM iteration: \(x_{k+1} = x_k + \alpha (\bar{x}_k - x_k) \), where \(\bar{x}_k := \arg\min m_k(x) \).

Inexact minimization: instead of \(\bar{x}_k \), use \(\hat{x}_k \) such that
\[
\|\nabla m_k(\hat{x}_k)\| \leq \eta_k \|\nabla \phi(x_k)\|,
\eta_k := \left\{ 0.5, \sqrt{\|\nabla \phi(x_k)\|} \right\}.
\]
NIM: Inexact model minimization

Problem: \[\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right]. \]

(Assume \(h \equiv 0 \) for simplicity.)

Model: \[m_k(x) = (g_k - u_k)^\top x + \frac{1}{2} x^\top H_k x + \text{const}. \]

NIM iteration: \[x_{k+1} = x_k + \alpha (\bar{x}_k - x_k), \] where \(\bar{x}_k := \arg\min m_k(x) \).

Inexact minimization: instead of \(\bar{x}_k \), use \(\hat{x}_k \) such that

\[\|\nabla m_k(\hat{x}_k)\| \leq \eta_k \|\nabla \phi(x_k)\|, \quad \eta_k := \begin{cases} 0.5, & \sqrt{\|\nabla \phi(x_k)\|} \end{cases}. \]

Problem: cannot compute \(\|\nabla \phi(x_k)\| \) (this in incremental optimization!).
NIM: Inexact model minimization

Problem: \(\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right] \).

(Assume \(h \equiv 0 \) for simplicity.)

Model: \(m_k(x) = (g_k - u_k)^\top x + \frac{1}{2} x^\top H_k x + \text{const} \).

NIM iteration: \(x_{k+1} = x_k + \alpha(\bar{x}_k - x_k) \), where \(\bar{x}_k := \text{argmin} \ m_k(x) \).

Inexact minimization: instead of \(\bar{x}_k \), use \(\hat{x}_k \) such that
\[
\| \nabla m_k(\hat{x}_k) \| \leq \eta_k \|g_k\|, \quad \eta_k := \left\{ 0.5, \sqrt{\|g_k\|} \right\}.
\]

Recall: \(g_k := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v_k^i) \approx \nabla \phi(x_k) \).

Convergence rate remains superlinear!
Problem: \[
\min_x \left[\phi(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right].
\]
(Assume \(h \equiv 0 \) for simplicity.)

Model: \(m_k(x) = (g_k - u_k)\top x + \frac{1}{2} x\top H_k x + \text{const.} \)

NIM iteration: \(x_{k+1} = x_k + \alpha(\bar{x}_k - x_k) \), where \(\bar{x}_k := \arg\min m_k(x) \).

Inexact minimization: instead of \(\bar{x}_k \), use \(\hat{x}_k \) such that
\[
\|\nabla m_k(\hat{x}_k)\| \leq \eta_k \|g_k\|, \quad \eta_k := \left\{ 0.5, \sqrt{\|g_k\|} \right\}.
\]

Recall: \(g_k := \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(v^i_k) \approx \nabla \phi(x_k) \).

Convergence rate remains superlinear!

For \(h \neq 0 \), all of this can be generalized using the composite gradient mapping (see paper for details).
Order of component selection (cyclic vs randomized)

- What if randomized order is used in NIM instead of cyclic?
Experiments (ℓ_2-regularized logistic regression): Epochs

Residual in function L^2-reg, a9a ($n=32561$, $d=123$)

- NIM
- SAG
- Newton
- LBFGS
- SFO
- SGD

Residual in function L^2-reg, covtype ($n=581012$, $d=54$)

- NIM
- SAG
- Newton
- LBFGS
- SFO
- SGD
Experiments (ℓ_2-regularized logistic regression): Real time

<table>
<thead>
<tr>
<th>L2-reg</th>
<th>$alpha$ ($n=500,000$, $d=500$)</th>
<th>mnist8m ($n=8,100,000$, $d=784$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIM</td>
<td>SAG</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>1.91s</td>
<td>1.36s</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>13.37s</td>
<td>6.72s</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>28.56s</td>
<td>17.73s</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>36.65s</td>
<td>36.04s</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>46.66s</td>
<td>1.0m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>53.92s</td>
<td>1.5m</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>57.63s</td>
<td>2.0m</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>1.0m</td>
<td>2.7m</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>1.1m</td>
<td>3.5m</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>1.2m</td>
<td>4.3m</td>
</tr>
</tbody>
</table>

Inner solver: Conjugate Gradient Method.
Experiments (ℓ_1-regularized logistic regression): Real time

<table>
<thead>
<tr>
<th>L1-reg</th>
<th>alpha ($n=500,000$, $d=500$)</th>
<th>mnist8m ($n=8,100,000$, $d=784$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NIM</td>
<td>SAG</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>26.76s</td>
<td>1.31s</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>44.94s</td>
<td>6.52s</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>55.56s</td>
<td>17.26s</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>1.1m</td>
<td>35.51s</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1.3m</td>
<td>1.0m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.3m</td>
<td>1.5m</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.4m</td>
<td>2.1m</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>1.5m</td>
<td>2.9m</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>1.6m</td>
<td>3.8m</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>1.6m</td>
<td>4.8m</td>
</tr>
</tbody>
</table>

Inner solver: Fast Gradient Method [Nesterov, 2013].
The presented Newton-type Incremental Method (NIM) is the first incremental method with a superlinear rate of convergence. Method NIM can be seen as an incremental variant of the standard Newton method. NIM has the same advantages and disadvantages as the classic Newton method:

- Fast superlinear rate of convergence with the unit step length.
- Superlinear convergence is guaranteed only locally.
- Not applicable to high-dimensional problems.

Thank you!