Supplementary material for
A Superlinearly-Convergent Proximal Newton-type Method for the
Optimization of Finite Sums
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1 Notation

In what follows we work only with Euclidean norms:

|z|| := Va Tz, and |zl := Ve THz, z € R

where H is a symmetric positive definite matrix.

We also use the following two proximal mappings:

. 1
pro (o) i= anganin () + 3 Iy ~ ol

yeRA
) 1 2
pros! () = argan () + 3 Iy — ol
yeR4



2 Auxiliary lemmas

Lemma 1. Let w1, ..., w, € R? be any vectors. Then

1 n 1 n 2 1/2
- Z wi|| < - Z [|w | .
=1 =1

Proof. Denote w := [wy...w,]" € R™ and E := [I...1]T € R"*? where I € R is the corre-
sponding identity matrix. Then

n n 1/2
1 _LipTe) < _ (L 12
;gjw = B wll < =Bl ]l = (n;nwzn ) ,

because ||E|| = )\Iln/fx(ETE) = )\rln/fx(nf) =nl/2, O

Lemma 2. Suppose the gradients V f; are Lipschitz-continuous:
”sz(m)_va(y)H SLf ||m—y||7 i=1,...,n

Then, for any minimizer z* of ¢(z) := = > | fi(x) + h(z), we have the following two inequalities:
e |
-
1/2
(Ly+2) ( Z vk — > :

Proof. Since z* is a minimizer of ¢, it satisfies z* = prox,(z* — (1/n) > Vf;(z*)). Using this
expression, the non-expansiveness of prox; () and the Lipschitz-continuity of V f;, we get the following
chain of inequalities:

n

%Zvi — proxy, (711 z:v}C — iZVfAv,Z))
i=1 i=1

i=1

| A

n

TllZU,iproxh<lzkaVfl >||
1 n ; . 1 n ; 1 n ;
HZU’“_ x* — proxy, <nZUk—nZVfi(vk)>H
i=1 i=1 i=1
Ik |

n

IN

IN

Vi) - Vi)

loi. ==~ -

Thus, the first inequality of the lemma is proved. The other inequality follows from LemmalT] O

3 Local convergence rate: simple case

In this section we consider the situation when h = 0, i.e. we apply NIM for minimizing the function

1 n
= n ;fi(ﬁ)

Recall that at each iteration NIM works with the following model of the objective:

1 — A 1 , A .
o Z [fz i) + Vfi(vp) T (2 —op) + 5(55 — ) 'V fi(vp) (@ — vh) |



where v, are some points that are updated in iterations (one point at every iteration). Since the model does
not contain the term h(x) (it is zero), we can write down the minimum of my, in the closed form:

Ty = argminmy(z) = ( Zv% (vi )l — fZsz ) )
zeR4

where H, := 1 3" | V2 f;(vi). In this section we focus on the simple case when we are able to calculate
T, exactly, so there is no additional error associated with inexact model minimization.

3.1 Theorem statement

In what follows we prove the following theorem on the local convergence rate of NIM.

Theorem 1 (local convergence rate). Suppose the Hessians V2 f; are Lipschitz-continuous:
[V2fi(z) = V2 A || < My fle =yl i=1,....m,

forall z,y € R Let {x}}x>n be the sequence of iterates generated by NIM with the unit step size oy, = 1
and cyclic order of component selection. Assume x* is a minimizer of f with positive definite Hessian:

V2 ( Zv fia*) = pgl, up >0, ()
and all the initial points xq, . . ., T,_1 are close enough to x*:
lx; —z*|| < R, i=0,...,n—1. )

Then the sequence {xy },>0 converges to x* at an R-superlinear rate, i. e. there exists {zj } >0 such that

lze — 2| < zx, k>0
Zk+1 S Ak 2k, k Z n,
where g, — 0 and zg = - -+ = z,,—1 = MaXg<i<n—1 ||T; — Z*].

The expressions for R and qi, are as follows:

3 glk/n1=1
sy

R:=——, =(1-—
ony; ( 4n)

3.2 Main estimate

When considering local convergence, we assume that NIM uses the unit step length o = 1 at every iteration
and the order of updating the points vy, is cyclic:

Tht1 = Tk,
i Tpy1 ft=kmodn-+1
V41 = i :
vy, otherwise.
Note that the cyclic order of updating means the points v}, i = 1,...,n, are exactly the last n iterates
Thy Th—1,- - -, Th—n+1 (but possibly in different order).

Lemma 3 (main estimate). Let k > n — 1 be the number of the current iteration. Assume the last n points
Tk, - .., Tk_n+1 are close enough to T*,

[E =0,...,n—1. 3)

* a2
— < -
vl = 2M;’

Then for the next generated point xy 1, the following bound holds:

@1 — 2™ < —= ( leiﬂk i— x| > “)



Proof. Recall the iteration of NIM:
( LIRS St )

where Hy, == + 3" V2 fi(vi).
Since z* is a minimizer of f, we have 0 = V f(z*) = Y. | V fi(x
1 = 2 ) g * 1 S
— > VARl — ' = Y [V filvi) = Vi)
i=1

=1

*). Using this equality, we get

Note that HH{IH = 1/Amin(Hy), so we obtain

E VA~ o)~ 3 SOIVAE) - Vi)

ks — 2| < [|Hy

[eh 41 — 2" <

Now we use the Taylor formula for gradients and Lipschitz-continuity of V2 f;:

n

" Auin Z / [V2 fi(v},) = V2 fi(v} + 7(@" = o}))] (v} — 2*)dr
Mf 1 i %2
= D () ( Z ok - ) -
Thus,

2k = 2"l < G 2A < ZHUk ) )

Let us estimate Ay, (Hy). First, let us bound the difference between Hj, and V2 f(z*):

<*ZH”1@

n, are exactly the last n iterates

LS IV i(ef) - Ve

i=1

|Hi — V> f(z*)

H"

Since the order of component selection is cyclic, the points v, i = 1,...,

Tip—i, © =0,...,n — 1, (possibly rearranged). Therefore,

M n—1
| H = V2 f @) = =L 3 llewms =l < L

where the inequality follows from (3). Using this bound together with (T), we get
)\mln(Hk) > )\mln(v2f - HHk_v2f( )H Z %

Thus, Amin(Hg) > 117/2. Using this in (5 and replacing the sums involving v}, with the sums involving
x—;, we get @). O

3.3 Convergence rate of the sequence

Let us investigate the convergence properties of the following (recurrent) sequence arising in (@):
1 n
. 2
2= A (n Zl Zk-i) ; k>n, (6)
i—

4



where A > 0 is some constant.
First, let us understand the conditions under which the sequence {zj },>0 (monotonically) converges
to zero. Note that from (6) it follows that

< 12 ) )
zp < A 121%)(”{2;@,1} <A lréliagcn{zkl}> lrél%xn{zk,z},

and the equality may hold when z;_1 = - - - = z_,,. Therefore to guarantee the (monotonic) convergence
of {zx } x>0 to zero, we must enforce the following condition on the initial elements 2o, . .., Z,—1:

Az <1, i=0,...,n—1.

In particular, we may require that

1
zi§2—7 1=0,...,n—1 @
This will guarantee that
1
< — i >
* S g 1r£1;?b<xn{zk,l}7 k>n. 8)

In what follows we always assume that the initial elements of {zj } >0 satisfy (7).

In view of (8], the sequence {z}r>0 converges to zero. However, this convergence may be non-
monotonic. For example, if z5 > 0 (but small enough), and 2y = --- = 2,1 = 0, then 2z,, > z,_1.
Nevertheless, it turns out that if the initial elements of {zj}x>( are initialized with the same number,
20 = -+ = zy_1, then the sequence {2 }1>¢ is monotonic.

Lemma 4 (monotonicity). Let zg = - - - = zp_1. Then {z >0 is monotonic: z+1 < zy, for all k > 0.

Proof. According to we have z,, < z,,_1. Thus, we know that zop = - - - = z,,_1 > z,.
We proceed by induction. Suppose we know that z5 > --- > 2 for some k > n. We will prove that
this implies z; > zx41. Indeed, according to the induction hypothesis, z < zj_,,. Therefore,

2 2 2 2 2 2
§ Zhp1—i = 2 T E Zjo—i < Zjg_pp + E Z_i = E 2

Using this and the definition (6) of {2 }5>, we have

1 ¢ 1
2 2
Zpr1 = A " E Ziop1oi | A= g Zii | = 2.
i=1 ;

n
1=1
O
From now on, in addition to (7), we assume that zo = - - - = z,,_1. Due to the monotonicity of {zy} k>0s
inequality () now becomes
1
2z < 5 %h=n> k>n. 9
Using the monotonicity, we can prove that the convergence rate of {zj, }1>¢ is at least linear.
Lemma 5 (linear convergence). The convergence rate of {zy } x> is at least linear:
<(1-23 k> (10)
z —— |z n.
E+1 S an ) 7 2

Proof. Note that

n n 2 2 n

12 22 :32 ZQ,fl[Zﬂ — 2] = 1 Zkn T %k EE 2

n 4 k+1—1 n 4 k—1 n k—n k Zn 2 n k—1
i=1 =1

i=1



Let us find a lower bound for the fraction. Using >, z7_, < nzi_,, and (), we have
2 2
Foen %k o 1—1/4:3

D1 Zhy n 4dn

Thus, we have proved:

1, 3 1 5
— < (1—-— — .
- ;:1 Z1-i = < 4n> <n ;:1 Zk—l)
Using this inequality and the definition (6)) of {2 }x>n. we obtain

14, 3 1 5 3
= — . J— — ) < -
Zpr1 = A (n ;:1 Zk+1—1> < (1 4n) A (n ;:1 zk_z> < (1 4n> 2k

The next lemma shows that the convergence constant in (I0) improves after every n iterations.

Lemma 6 (improving the constant). Suppose that, starting from number ko > n, the sequence {2y} >0
converges linearly to zero with constant qq:

Zk+1 < qo2k; k > ko. (11)
Then, starting from number ko + n, the constant qy can be replaced with a smaller constant:
Zit1 < 482k, k> ko+n.

Proof. Let k > ko + n. Using the definition (6) of {2} >, and bound (TI), we have the following chain

of inequalities:
1 & 1< , )
2pi1 = A EZZ£+1_7; quA ﬁzzk—i < g5 k-
i=1

i=1

Let us summarize the results we have established.

Lemma 7. Let {Zk}kzo be a recurrent sequence defined in @ Suppose the initial elements z, . .., 2Zp_1
of this sequence are chosen equal to the same number small enough:

20=-"=2zp1 < R.
Then the sequence {zy } >0 converges monotonically to zero at a Q-superlinear rate:
Zk+1 < Q2 k=n.

The expressions for R and qi, are as follows:

1

Proof. Denote g := (1 — 3/4n). According to (T0) and Lemma@we can write the following sequence of
inequalities:

olk/nl—1

21 < 2k, k>n,
Ze1 < ¢z, k> 2n,
21 < ¢, k > 3n,

Combining all these inequalities together, we get

lk/n]—1
Zrr1 < @2 ze,  k>n.



3.4 Proof of the theorem
Now we can give the proof of the theorem on the local convergence rate of NIM.

Proof. Consider the sequence {zj}r>o defined in (6) with A := My/uy. Let us set the initial ele-

ments 2, . .., 2,—1 of this sequence to the same value:
20=-"+=2p_1:= max |z;—z"|| <R
0<i<n—1

According to Lemma the sequence {2z }>0 converges monotonically and Q-superlinearly to zero

with constants ¢. In particular, it means that {zj, }1>( always stays bounded:
My

2 < RS —— k> 0. 12

k= = 2Mf7 et ( )

Due to the initial condition (2)), we can apply Lemma [3|for £ = n — 1. Since, by construction, the

values ||z; — «*|| are bounded above by z; fori = 0,...,n —1, we have ||z, — 2*|| < 2,,. In view of (I2),

it means that the new iterate x,, does not leave the R-vicinity of 2*. Therefore, we can apply Lemma 3|

again but for k = n. Using the same reasoning, we conclude that ||, 11 — 2*|| < 2,41 < R, and so on.

Thus, Lemma 3| holds for all & > n — 1 and the sequence {zx } >0 majorizes {[|z; — z* ||} k0. O

4 Local convergence rate: general case

In this section we consider the more general situation than in Section [3}—the case when the objective
function is given in the composite form:

o(x) == % > filx) + h(z). (13)
i=1

In this case NIM uses the following model:

n

1 . , A 1 ) A ,

mi(@) = 53 [ﬂ-(vz) + VD) @ =) + @ — o) TV L) @ - v@] +h(a),
i=1

where v} are some points that are updated in iterations (one point at every iteration). Using the prox

operator, we can write down the minimum of the model m, as follows:

T = argmin my(x) = proth’“ (Hk_l (711 Z V2 fi(vi)vi — %Z Vfi(v,i)>> ,
i=1 i=1

zeR4

where Hy, := =37 | V2 fi(v}). We assume that the subproblem Z), = argmin, my(x) may be solved
inexactly, i.e. instead of Z; we actually get some Z;. We now explain which conditions Zj must satisfy
using the notions from Nesterov| (2013)).

Let us treat my, as the composite function: my(z) =: s(z) + h(z). Denote

Ty (o) i= anguin | V3(0) (0~ ) + 5 Iy = ol + bl
yeR

gr(x) := L(x — Tr.(2)).

Then we require that &, = T, (yy) with y;, satisfying

llgr (ye)|l < , (14)

where y € (0, 1] is some constant and L is any number such that L > Ly = 1.



4.1 Theorem statement

In what follows we prove the following theorem on the local convergence rate of NIM for composite
functions.

Theorem 2 (local convergence rate). Suppose the Hessians NV ? f; are Lipschitz-continuous:
’|v2fz(x)7v2fz(y)” SMf ||$7y||, iil,...,n,

forallz,y € R%. Let {xk }k>n be the sequence of iterates generated by NIM with the unit step size oy, = 1
and cyclic order of component selection. Assume x* is a minimizer of (13) with positive definite Hessian:

* 1 - *
V2 f(z*) = - § V2 fi(a*) > pyl, py >0,
=1

and all the initial points x, . .. ,T,—1 are close enough to x*:
llo; — "] < R, 1=0,...,n—1. (15)

Then the sequence {xy, } >0 converges to x* at an R-superlinear rate, i. e. there exists {2y, } >0 such that

lzx — 2" < 2z, k>0
21 < Qi k>n,
where g, — 0and zg = -+ = 2,1 '= MaXg<i<n—1 ||T; — 7.

If the subproblem is solved exactly, then

[f 3
= c=1-—
=gy @ ( 4n)

Otherwise, if it is solved inexactly using the termination condition (14)), then

i 13 1/(27) . (1) %/ /2
R :=min ! , / ; g =(1-— ’
2M; 128(2 + Ly)5+2v 16n

where Ly is the Lipschitz constant of V f;:

IVfi(x) =V il < Lylle =yl i=1,...,n.

glk/n1—1

forall x,y € R4

4.2 Main estimate

When considering local convergence, we assume that NIM uses the unit step length o = 1 at every iteration
and the order of updating the points vj, is cyclic:

Tpt+1 = Tk,
i Tpy1 ifi=kmodn—+1
karl = i .
vy, otherwise.
Note that the cyclic order of updating means the points v,i, 1 = 1,...,n, are exactly the last n iterates
Tk, Tk—1,---,Tk—n+1 (but possibly in different order).

Lemma 8. Ler x* be a minimizer of (13). Then the stopping criterion (1) for solving the subproblem
guarantees the following bound for |ley|| = || — argmin, mg(x)]|:

n (1+v)/2
1 )
lewll < Ah ()2 + Lp)* <n§ ek - w*ll2> -
i=1



Proof. The function my, is strongly convex with constant A, (Hj) and the gradient Vs of its smooth
(quadratic) part is Lipschitz continuous with constant L. Therefore, by Lemma 3 from Nesterov| (2013),
we have

s — 2]l < Ak () (1 n Lf) loz )l

Recall that the constants L in (]ED satisfy L > Ly = 1 (by construction). Thus,
2% = 2]l < A (Hi)(L+ L) gz (9)]] -

To finish the proof, it remains to apply inequality (T4) together with Lemma 2] O

Lemma 9 (main estimate). Let k > n — 1 be the number of the current iteration. Assume the last n points
Tk, -, Tk_n+1 are close enough to z*,

My

TS i=0,...,n—1. (16)

zr—i — 2" <

Then for the next generated point x4 1, the following bound holds:

o (147)/2
* 12

- § - =3 e~ LT

[@k1 — 2] < ki — 2] ) (n 2 ki — 2] > an

8(2+Lys)5+2
3

where E = 0 when the subproblem is solved exactly and E = m
¥

when it is solved using FGM
with stopping criterion (14).

Proof. Denote Hy, := (1/n)>"1" | V2 fi(vi).

According to the iteration of NIM, we have: 1 = argmin, my(z) + ex, where ey, corresponds to
the error in solving the subproblem. Using the definition of the scaled proximal mapping, we can rewrite
this as follows:

Tht1 —PYOX;L < ( Zv2f2 - *vaz (v}, >> + ek.

Since z* is a solution of (T3), we have :17 = proxh "(z* — (1/n) >i, V fi(z*)). Using this equality
and the non-expansiveness property of proxh k(-), we get

-1 (; >V hiwi)lok — ] - LS Aie) - me:*)])

=1

+ ekl o,
Hy,

lehsr — 2", <

n

P VAR~ 2] - 1 V) - Vi)

=1

+ llexll g, -
H!

Using the bounds )\mm( ) lw|| < Jlwllg < )\%n/gx(B) ||w]| in the previous inequality, we obtain

n

LT ) = L A6 T+

=1

Amax(Hk)

N () llexll-

Te41 — T || =
k1 — 2| < Amm N

To bound the first term, we use the Taylor formula for gradients and Lipschitz-continuity of V2 f;:

Amm Z/ [V21iwh) = V2 filvg, + (@™ = vp)] (v — 2")dr

- (n;nvk | )

n

Z Vb eh — 2*) — SV filof) — Vi)

n -
=1

Amm




To bound the second term, we use Lemma 8}

(14+7)/2
2+L
\/ Hekn < J;Ik < Z i — ) .

(2 + Lf)2+7 )\max
) )\min(Hk) ( Z HUk:

mln

Thus,
) (1+7)/2

ek — a7 < QA ( Z vk —
(18)

Let us estimate the eigenvalues of Hy. Since each function f; has Lipschitz-continuous gradient with
constant L, each Hessian ngi(v,i) is bounded above by L¢1, i.e. Amax(Hi) < L. To find the lower
bound for A, (Hy,), we first bound the difference between Hy and V2 f(x*):

* 1 - 7 - 7 *
It = Ve = | S tek) = V| < TS ok a7
i=1 i=1
Since the order of component selection is cyclic, the points v}, i = 1,...,n, are exactly the last n iterates
Tip—i, © =0,...,n — 1, (possibly rearranged). Therefore,

n—1
* M *
0 = V2@ | = ZE 3 s =7l < 5
where the inequality follows from (I6). Using this bound together with (??), we get
"
/\mln(Hk) > Amm(VQf - ||Hk - vzf( )H Z ?f

Thus, Amin (Hg) > py/2 and Apax(Hg) < Ly. Applying this in (I8) and replacing the sums involving
v} with the sums involving z,_;, we get (T7). O

4.3 Convergence rate of the sequence

Let us investigate the convergence properties of the following (recurrent) sequence arising in (I7)):

o L (147)/2
(i) e (i) ke 9
i=1 =1

where A > 0, E > 0,0 < v < 1 are some constants.
First, let us understand the conditions under which the sequence {zj },>0 (monotonically) converges
to zero. Note that from (19)) it follows that

2 < A max {zk ) +E max {z;C = <A max {z;C i} + F max {z— Z}”) max {zx—:},

1<i<n 1<i<n
and the equality may hold when z;_; = - - - = zx_,. Therefore to guarantee the (monotonic) convergence
of {zx } x>0 to zero, we must enforce the following condition on the initial elements 2o, . .., Z,—1:

Az + Ez] <1, 1=0,...,n— 1.

In particular, we may require that

hen E = 0): P < =,
(when ) Z_QA

ERNL (20)
(when E > 0): z; <min ¢ — () , 1=0,...,n—1.



This will guarantee that

1
(when E = 0): 2z < 5 1r£1a<x {zk—i}, k> n.
: < - >n.
(when E > 0) S 1rgza<xn{zk it k>n

In what follows we always assume that the initial elements of {zj } >0 satisfy (20).

In view of (ZI), the sequence {zx}r>0 converges to zero. However, this convergence may be non-
monotonic. For example, if zo > 0 (but small enough), and 2y = --- = 2,1 = 0, then 2z,, > z,_1.
Nevertheless, it turns out that if the initial elements of {zj}x>¢ are initialized with the same number,
29 = -+ = zy_1, then the sequence {2 }>¢ is monotonic.

Lemma 10 (monotonicity). Let zo = - - = z,_1. Then {zj }r>0 is monotonic: zy11 < zj forall k > 0.

Proof. According to ZI) we have z,, < z,_1. Thus, we know that zg = - -+ = 2,1 > 2.
We proceed by induction. Suppose we know that z5 > --- > z; for some k > n. We will prove that
this implies z; > zx41. Indeed, according to the induction hypothesis, zx < zi_,,. Therefore,

n n—1 n—1 n

2 _ .2 2 2 2 _ 2
§ Zip1—s = 2 T E Zjo—i < Zjg_pp + E Z_i = E Zj—i-
i=1 i=1 i=1 i=1

Using this and the definition (T9) of {zx };>n. we have

1 ] (1+v)/2
Zk+1—A<nZZ£+1 z) (nZ Zhpn )

i=1

L& L (1+7)/2
<Al-= CEP Y ) 2 = 2.
- <TL Z Zk_i) + (n Zk—z) 2k

i=1 i=1
O
From now on, in addition to @]), we assume that zp = --- = z,_;. Due to the monotonicity
of {zx } x>0, inequality (ZI)) now becomes
1
(when E' = 0): 2 < 2zk ns k>n.
3 (22)
(when E > 0): 2z < 4zk ns k>n.
Using the monotonicity, we can prove that the convergence rate of {zj, }1>¢ is at least linear.
Lemma 11 (linear convergence). The convergence rate of {2y } k>0 is at least linear:
3
(when E = 0): 241 < 1—4— Zk, k>n.
n
7\ (1492 23)
(when E > 0): Zht1 < (1 — 16n> Zk, k>n.
Proof. Let us consider the case EY > 0. The proof of the other case is similar.
Note that
1 n Z%_n _ Z% 1 n
ren b = (- gt (T
i=1 = z i=1

11



Let us find a lower bound for the fraction. Using >~ | z7_, < nzi_, and (22), we have

22—k S 1-9/16 7
Dlim1 Zhei n ~ 16n”

Thus, we have proved:

1, 7 1
- <12 [= .
Using this inequality and the definition (I9) of {zj }x>,. we obtain

1 1 (1+7)/2
zpy1 = A (n Z Z13+1—i> +E (n Zz1§+1—i>
i=1

i=1

7 1 n ) 7 (147)/2 1 n , (1+v)/2
()i )« (-5) E(rad

=1

7 N ()72
<(1- - .
= ( 16n) “

The next lemma shows that the convergence constant in (23)) improves after every n iterations.

Lemma 12 (improving the constant). Suppose that, starting from number ko > n, the sequence {zy } k>0
converges linearly to zero with constant qq:

2k+1 < 02k, k > ko. (24)
Then, starting from number ko + n, the constant qy can be replaced with a smaller constant:

(when £ = 0): 21 < quk, k> ko +n.
(when E > 0): Zp+1 < qéJ”zk, k> ko +n.

Proof. Again, we consider only the case E¥ > 0. The other case is similar.
Let k > ko + n. Using the definition (T9) of {2 } 1>, and bound (24), we have the following chain of
inequalities:

o L (147)/2
Zpy1 = A (n ZZI%-H—@') +E (n Z Zl%+1—i>
i=1 i=1
Lo L& (14~)/2
cia(Pya)eare(iya)  cana

=1 =1

Let us summarize the results we have established.

Lemma 13. Let {2, } ;>0 be a recurrent sequence defined in (19). Suppose the initial elements z, . . . , zn—1
of this sequence are chosen equal to the same number small enough:

20 =" = Zp_1 SR
Then the sequence {zy } >0 converges monotonically to zero at a Q-superlinear rate:

Zh+1 < Qi 2k, k>n.

12



The expressions for R and qi, are as follows:

1 3 olk/n]-1
E=0): = — =(1-—
(when 0) R 51 qk < 4n>
1 1 1/~ 7 (1+’Y)Lk/n-‘/2
E : = 1 R J— = 1 —_— .
(when E2 > 0) R := min 51 <4E> , qx < 16n)

Proof. Consider the case £ > 0.
Denote ¢ := (1 — 7/16n)'/2. According to and Lemma we can write the following sequence
of inequalities:

Zrr1 < ¢ 2, k>n,
2

Zrp1 < ¢ 2, k > 2n,
3

2z < g 2, k> 3n,

Combining all these inequalities together, we get

Lk/n]
Zh41 < q(l"”) Zks k>n.

4.4 Proof of the theorem
Proof. Consider the sequence {zj };>0 defined in (T9) with

M 8(2+ L;)5+2y
A= —f, E = 7( 3f) .
Ky Ky
Let us set the initial elements 2y, . . ., 2,1 of this sequence to the same value:
Z20=-=2p_1:= max |z;—2%| <R.
0 T g<i<n1 s Ih=

According to Lemma the sequence {zj },>0 converges monotonically and Q-superlinearly to zero
with constants ¢. In particular, it means that {2, } ;>0 always stays bounded:

Hf
< R< > 0.
Zk*R*2Mf’ k>0 25)

Due to the initial condition (T3], we can apply Lemma[9|for & = n — 1. Since, by construction, the
values ||z; — z*|| are bounded above by z; fori = 0,...,n —1, we have ||z,, — z*|| < z,,. In view of (23),
it means that the new iterate x,, does not leave the R-vicinity of z*. Therefore, we can apply Lemma [9]
again but for k& = n. Using the same reasoning, we conclude that ||z,+1 — 2*|| < z,4+1 < R, and so on.
Thus, Lemma 9] holds for all £ > n — 1 and the sequence { zx } x>0 majorizes {[|zx — z*||}x>0- O

5 Global rate of convergence
We consider minimizing

8(z) = 5 > fi(w) + ho)

In this section we give a proof of the global convergence of NIM in the particular case when h(z) is an

(y-regularizer, h(z) = § ||z 2, and there is no inexactness in finding the minimum of the model.
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Our proof is based on the work by Gurbuzbalaban et al.| (2015). To analyze NIM, we view it as a
perturbed scaled gradient method. In the following we use the notation

Zv% )+ pul.

Also we can rewrite the step of NIM as follows:
Tyl = Tk + Pk, (26)
where py, is the search direction of NIM:

Dk =T — Tp = A;zl(uk — gk — Arxy)
< Zv2fl *Ik *7va7 vk [LIk)

Denote the search direction of the scaled gradient method as

PR = =AY ().

Then (26) can be rewritten as:
SG
Tri1 = Tk +apy, - + aeg,

where ey, is the error in the approximation of p$€ by py:

- SG
€k ‘= Pk — Pk -

Lemma 14. For a twice continuously differentiable strongly convex function ¢ with constant p and Lipschitz-
continuous gradient with constant L we have the following bounds:

1
7 IVe@)lly < llz —27, < ~ ||V¢ )|l

and

1 1
Y IVo(@)ll; < ¢(x) — d(a”) < o IV (@)ll5 -
where x* is the optimum of .

In what follows we assume that n > 2.

5.1 Bounding the norm of the error

Lemma 15.
lerlly < T [T
and AL
lexlly < = max VGG,
Proof.

e = < ZVsz vi) (vh, — o) %Z [Vfi(v sz@k)]) :
=1

Taking the norms, we get
1 & ) ) 1 <& .
lexllz < [[4: ", <n2||V2fi(vi>H2||vikaﬁnZHVfiW = Vfilan ||2>
i=1 i=1

14



By the Lipschitz-continuity of V f;, we have that ||V2f;(vi)||, < L and ||V fi(v}) — Vi(ze)|, <
L||vj — @), Also [|A || < (1/p). So

2L <~ ||
llexlly < n ; vk — =], -

Since the order of component selection is cyclic,

k

n .
Yollvk—anlly= > Ny —ally-
=1

j=k—m+1

Then
k

2L
(& — rji — X
ety < 52 32 lley —axll

j=k—n+1

IN

2L s — i
U j:kEIrlefi...,k Ti— Thllz

2L || H
= — m P .
L j:k—n+a1)f..,k—1 Ti ™ Tkl

The second inequality follows from the triangle inequality
;= zxlly < llzj — 27| + lzge — 27
O

First, we bound the norm of the error by a term proportional to the step length and the norms of the
gradients at the previous points.

Lemma 16.

L(4L -
2L( +M>(n a max _1|\V¢($t)||2-

<
||€k||2 > e t=k—2n-+2,... .k

Proof. Now forany j=k—n+1,...,k—1:

k—1 k—1 k—1
l2; — klly = Z[ms — Top1]|| < Z s = @541y < Z s = @541l -
s=j 9 s=j s=k—n+1

For the difference of successive points we have:

llzs — $s+1||2 fa (||p§G||2 + HesHQ)

For the first term, )
P54, < JASH], IV ()], < m [Vo(zs)lly -

For the second term we use the previous lemma:

4L
el < 25 __max (Vo).
Therefore,
a(4L + p)
o= welly < S ma Vo),
So
k—1
a(4L + p)
zj —zlly < iz Z t=s—r£11;-ii-)i...,s Vo)l
s=k—n+1
a(n —1)(4L 4 p)
< e pongmax - IVetzoll,

15



Finally,

2L(4L + p)(n — Do
lexll, < e max [Vl

5.2 Proof of the theorem about global convergence
Note that ¢ has Lipschitz-continuous gradient with constant L + .

Proof. By Lipschitz-continuity of the gradient we have

O(wrst) — o(an) < Volen) (@ret — a1) + 20t gy — au2

2
= —aVé(xr) T A Vo (z) + aVe(zr) ex
a2
L g L e 1 ) e

Now we bound each term above in terms of the norms of the previous gradients.
For the first term, using Apax(Ax) < L + p, we have

Vo) Ay Volen) <~ IV}

For the second term we use the Cauchy-Schwarz inequality and bound for | e ||

aVe(ay) Ter < allVo(ar)|, ekl

2L(4L + p)(n — 1)a?
< E A Vel

For the third term we use the bound ||pi¢ ||, < || 4|, IV (zk)l,:

I 2 L °
(e o2 < Etie o

For the fourth term we use the lemma:

(L+pa® o AL*(L+p)(AL + p)*(n — 1)%a 2
— llexlz < 27 o omax Vel

For the firth term we use the Cauchy-Schwarz inequality and the lemma:

(L + p)a® () Tex

IN

(L + p)e? ||[DRC |, el

2L+ UL+ (= Dad Va2

- u t=k—2n+2,...k
Combining all these bounds, we get
! (L+ p)o
_ < | =
blont) —ofan) < (— o+ L) 9
2L(4L 4+ p)(n —1 L+wa® 2L(L+ p)(4L + p)(n — 1ot
(L + p)(n = 1) (a2 Ll | AL+ UL (= 1) ) max ([ Vo(z)|l3.
o 7 2u t=k—2n+2,....k

Now bound the gradients in terms of function values:

196} = 20(6e0) = 6] and | max Voally < 2(L+n),_max | [é(en) = d(a”)]

For oo < 2(p/(L + p))? the coefficient before ||V (xy) ||, is non-positive.
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Denote Vi, := ¢(xx) — ¢(x*). Then we have proved the following bound:

Vir1 <p(@)Vi+ale), | max T

where
._ por (L+p)a?
2L(L+p) AL+ p)(n—1) (5  (L+p)a®  2L(L+ p)(4L + p)(n — 1)a?
o(a) = 22 M)(/ﬁ” 1) )(a+( uu) L 2L+ ) 2Mgu)( ) )

Using lemma 3.2 of Gurbuzbalaban et al.|(2015)) we have that for o small enough p(«) + g(a) < 1 and
that V}, converges linearly with constant ¢ := (p 4 ¢)'/(1+2(n=1),
O

6 Order of component selection

There are two standard strategies in NIM for choosing the component ¢, to update: 1) cyclic when i, =
(k mod n) + 1, and 2) randomized when at every iteration i, € {1,...,n} is chosen uniformly at random.
In all our experiments we observed that NIM always converges faster under the cyclic order. Here we
analyse this situation.

Let’s consider a particular function ¢(z) for optimization using NIM:

1< T, oo 1, 3
:ﬁ;fi(z)zgllxll + 1, @7

1 1
filw) = 3lall? + Sllal, filw) = 5?0 > 1.

Lemma 17. Using NIM with unit step size and exact model minimization for function [27) leads to the
following iterate:
loall o

v

T = —
T T 0ok

Proof. Using unit step size means that the next iterate x5 ; in NIM coincides with exact minimum of the
model my (x). This minimum can be found as follows:

w1 = Hy Hug — gx)- (28)

Here all the values Hy, u, gx for the function can be calculated directly:

'Ul 'Ul T
H, Zv% (oh) = I + b+ e )" ||)( 'T) ,
=1 k

1 < ; 1
= vai(%) = gzvk + v llog,
ZVsz Z vj, + 2o |vy-

Substituting these expressions into (28)), we obtain:

1 v T Tk
Hkxk+1=(1+vk||f+( ||>(1ﬁ) >$k+1 (14 ok g + () Tkt |)| Pt = = g = ook
k

29)
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This result means that x5, can be represented as ow,i for some scalar a. Substituting av,ﬁ instead of xj41
into (29) and finding «, we obtain:

1
il

x = —— V%
SARS T TR TR

Now we are ready to prove the main theorem:

Theorem 3. Using NIM with randomized order for the function with center initialization ||v}|| < 1
leads to the following lower bound:

k
Bllownll 2 5 (1-2) Elll?)

Proof. From the last lemma and using condition ||vj || < 1 we have:

x = > 30
|| k+1|| 1 2Hvk” - 3 ( )
Let’s denote &, = E[||lzy41]%] and &, := E[||v}]|?], where expectation is taken w.r.t. all components

selections at all iterations. In NIM we have the following update rule for the next center:
Vg1 = Tpr I [i = i) + v I[i 7 ik,

where I[-] is indicator function. Now we can obtain recalculation formula for dy:

1 1
Ses = Ellowna ) = LEDousalPl+ (1= & ) B = (1= s + g
where ¢ = 1 — 1/n. Also §p = ||v}||?. Using this recalculation formula several times, we obtain:

Ok = (1= @)k +qop—1 = (1 = q)&k + q((1 — @)1 + qdr—2) =

=(1— @) +q(1 — Q)1+ (1 — Q)2+ +¢" (1 — q)&1 +¢"5 > ¢"do.
—— ———————
>0 >0 >0 >0

Using (30) we come to the theorem statement:

1
A

Wl =

O

This theorem proves that NIM with random order can at best have a linear convergence rate. Meanwhile
using NIM with cyclic order for the function gives the following upper bound:

k< flog]l?,

that is equivalent to Q-quadratic convergence w.r.t epochs and R-superlinear convergence w.r.t. iterations.
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