
Supplementary material for
A Superlinearly-Convergent Proximal Newton-type Method for the

Optimization of Finite Sums
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1 Notation
In what follows we work only with Euclidean norms:

‖x‖ :=
√
x>x, and ‖x‖H :=

√
x>Hx, x ∈ Rd,

where H is a symmetric positive definite matrix.
We also use the following two proximal mappings:

proxh(x) := argmin
y∈Rd

[
h(y) +

1

2
‖y − x‖2

]
,

proxHh (x) := argmin
y∈Rd

[
h(y) +

1

2
‖y − x‖2H

]
.
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2 Auxiliary lemmas
Lemma 1. Let w1, . . . , wn ∈ Rd be any vectors. Then∥∥∥∥∥ 1

n

n∑
i=1

wi

∥∥∥∥∥ ≤
(

1

n

n∑
i=1

‖wi‖2
)1/2

.

Proof. Denote w := [w1 . . . wn]> ∈ Rnd and E := [I . . . I]> ∈ Rnd×d, where I ∈ Rd×d is the corre-
sponding identity matrix. Then∥∥∥∥∥ 1

n

n∑
i=1

wi

∥∥∥∥∥ =
1

n

∥∥E>w∥∥ ≤ 1

n
‖E‖ ‖w‖ =

(
1

n

n∑
i=1

‖wi‖2
)1/2

,

because ‖E‖ = λ
1/2
max(E>E) = λ

1/2
max(nI) = n1/2.

Lemma 2. Suppose the gradients ∇fi are Lipschitz-continuous:

‖∇fi(x)−∇fi(y)‖ ≤ Lf ‖x− y‖ , i = 1, . . . , n.

Then, for any minimizer x∗ of φ(x) := 1
n

∑n
i=1 fi(x) + h(x), we have the following two inequalities:∥∥∥∥∥ 1

n

n∑
i=1

vik − proxh

(
1

n

n∑
i=1

vik −
1

n

n∑
i=1

∇fi(vik)

)∥∥∥∥∥ ≤ Lf + 2

n

n∑
i=1

∥∥vik − x∗∥∥
≤ (Lf + 2)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)1/2

.

Proof. Since x∗ is a minimizer of φ, it satisfies x∗ = proxh(x∗ − (1/n)
∑n
i=1∇fi(x∗)). Using this

expression, the non-expansiveness of proxh(·) and the Lipschitz-continuity of ∇fi, we get the following
chain of inequalities:∥∥∥∥∥ 1

n

n∑
i=1

vik − proxh

(
1

n

n∑
i=1

vik −
1

n

n∑
i=1

∇fi(vik)

)∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

vik − x∗
∥∥∥∥∥+

∥∥∥∥∥x∗ − proxh

(
1

n

n∑
i=1

vik −
1

n

n∑
i=1

∇fi(vik)

)∥∥∥∥∥
≤ 2

n

n∑
i=1

∥∥vik − x∗∥∥+
1

n

∥∥∇fi(vik)−∇fi(x∗)
∥∥

≤ Lf + 2

n

n∑
i=1

∥∥vik − x∗∥∥ .
Thus, the first inequality of the lemma is proved. The other inequality follows from Lemma 1.

3 Local convergence rate: simple case
In this section we consider the situation when h ≡ 0, i.e. we apply NIM for minimizing the function

f(x) =
1

n

n∑
i=1

fi(x).

Recall that at each iteration NIM works with the following model of the objective:

mk(x) =
1

n

n∑
i=1

[
fi(v

i
k) +∇fi(vik)>(x− vik) +

1

2
(x− vik)>∇2fi(v

i
k)(x− vik)

]
,
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where vik are some points that are updated in iterations (one point at every iteration). Since the model does
not contain the term h(x) (it is zero), we can write down the minimum of mk in the closed form:

x̄k := argmin
x∈Rd

mk(x) = H−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)

)
,

where Hk := 1
n

∑n
i=1∇2fi(v

i
k). In this section we focus on the simple case when we are able to calculate

x̄k exactly, so there is no additional error associated with inexact model minimization.

3.1 Theorem statement
In what follows we prove the following theorem on the local convergence rate of NIM.

Theorem 1 (local convergence rate). Suppose the Hessians∇2fi are Lipschitz-continuous:∥∥∇2fi(x)−∇2fi(y)
∥∥ ≤Mf ‖x− y‖ , i = 1, . . . , n,

for all x, y ∈ Rd. Let {xk}k≥n be the sequence of iterates generated by NIM with the unit step size αk ≡ 1
and cyclic order of component selection. Assume x∗ is a minimizer of f with positive definite Hessian:

∇2f(x∗) =
1

n

n∑
i=1

∇2fi(x
∗) ≥ µfI, µf > 0, (1)

and all the initial points x0, . . . , xn−1 are close enough to x∗:

‖xi − x∗‖ ≤ R, i = 0, . . . , n− 1. (2)

Then the sequence {xk}k≥0 converges to x∗ at an R-superlinear rate, i. e. there exists {zk}k≥0 such that

‖xk − x∗‖ ≤ zk, k ≥ 0

zk+1 ≤ qkzk, k ≥ n,

where qk → 0 and z0 = · · · = zn−1 := max0≤i≤n−1 ‖xi − x∗‖.
The expressions for R and qk are as follows:

R :=
µf

2Mf
, qk :=

(
1− 3

4n

)2bk/ne−1

.

3.2 Main estimate
When considering local convergence, we assume that NIM uses the unit step length α ≡ 1 at every iteration
and the order of updating the points vik is cyclic:

xk+1 = x̄k,

vik+1 =

{
xk+1 if i = k mod n+ 1

vik otherwise.

Note that the cyclic order of updating means the points vik, i = 1, . . . , n, are exactly the last n iterates
xk, xk−1, . . . , xk−n+1 (but possibly in different order).

Lemma 3 (main estimate). Let k ≥ n− 1 be the number of the current iteration. Assume the last n points
xk, . . . , xk−n+1 are close enough to x∗,

‖xk−i − x∗‖ ≤
µf

2Mf
, i = 0, . . . , n− 1. (3)

Then for the next generated point xk+1, the following bound holds:

‖xk+1 − x∗‖ ≤
Mf

µf

(
1

n

n−1∑
i=0

‖xk−i − x∗‖2
)
. (4)

3



Proof. Recall the iteration of NIM:

xk+1 = H−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)

)
,

where Hk := 1
n

∑n
i=1∇2fi(v

i
k).

Since x∗ is a minimizer of f , we have 0 = ∇f(x∗) =
∑n
i=1∇fi(x∗). Using this equality, we get

‖xk+1 − x∗‖ ≤
∥∥H−1k ∥∥ ∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)[vik − x∗]−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥ .
Note that

∥∥H−1k ∥∥ = 1/λmin(Hk), so we obtain

‖xk+1 − x∗‖ ≤
1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)(vik − x∗)−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥ .
Now we use the Taylor formula for gradients and Lipschitz-continuity of∇2fi:

1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)(vik − x∗)−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥
=

1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∫ 1

0

[∇2fi(v
i
k)−∇2fi(v

i
k + τ(x∗ − vik))](vik − x∗)dτ

∥∥∥∥∥
≤ Mf

2λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)
.

Thus,

‖xk+1 − x∗‖ ≤
Mf

2λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)
. (5)

Let us estimate λmin(Hk). First, let us bound the difference between Hk and ∇2f(x∗):

∥∥Hk −∇2f(x∗)
∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

[∇2fi(v
i
k)−∇2fi(x

∗)]

∥∥∥∥∥ ≤ Mf

n

n∑
i=1

∥∥vik − x∗∥∥ .
Since the order of component selection is cyclic, the points vik, i = 1, . . . , n, are exactly the last n iterates
xk−i, i = 0, . . . , n− 1, (possibly rearranged). Therefore,

∥∥Hk −∇2f(x∗)
∥∥ =

Mf

n

n−1∑
i=0

‖xk−i − x∗‖ ≤
µf
2
,

where the inequality follows from (3). Using this bound together with (1), we get

λmin(Hk) ≥ λmin(∇2f(x∗))−
∥∥Hk −∇2f(x∗)

∥∥ ≥ µf
2
.

Thus, λmin(Hk) ≥ µf/2. Using this in (5) and replacing the sums involving vik with the sums involving
xk−i, we get (4).

3.3 Convergence rate of the sequence
Let us investigate the convergence properties of the following (recurrent) sequence arising in (4):

zk := A

(
1

n

n∑
i=1

z2k−i

)
, k ≥ n, (6)
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where A > 0 is some constant.
First, let us understand the conditions under which the sequence {zk}k≥0 (monotonically) converges

to zero. Note that from (6) it follows that

zk ≤ A max
1≤i≤n

{zk−i}2 =

(
A max

1≤i≤n
{zk−i}

)
max
1≤i≤n

{zk−i},

and the equality may hold when zk−1 = · · · = zk−n. Therefore to guarantee the (monotonic) convergence
of {zk}k≥0 to zero, we must enforce the following condition on the initial elements z0, . . . , zn−1:

Azi < 1, i = 0, . . . , n− 1.

In particular, we may require that

zi ≤
1

2A
, i = 0, . . . , n− 1. (7)

This will guarantee that

zk ≤
1

2
max
1≤i≤n

{zk−i}, k ≥ n. (8)

In what follows we always assume that the initial elements of {zk}k≥0 satisfy (7).
In view of (8), the sequence {zk}k≥0 converges to zero. However, this convergence may be non-

monotonic. For example, if z0 > 0 (but small enough), and z1 = · · · = zn−1 = 0, then zn > zn−1.
Nevertheless, it turns out that if the initial elements of {zk}k≥0 are initialized with the same number,
z0 = · · · = zn−1, then the sequence {zk}k≥0 is monotonic.

Lemma 4 (monotonicity). Let z0 = · · · = zn−1. Then {zk}k≥0 is monotonic: zk+1 ≤ zk for all k ≥ 0.

Proof. According to (8) we have zn ≤ zn−1. Thus, we know that z0 = · · · = zn−1 ≥ zn.
We proceed by induction. Suppose we know that z0 ≥ · · · ≥ zk for some k ≥ n. We will prove that

this implies zk ≥ zk+1. Indeed, according to the induction hypothesis, zk ≤ zk−n. Therefore,

n∑
i=1

z2k+1−i = z2k +

n−1∑
i=1

z2k−i ≤ z2k−n +

n−1∑
i=1

z2k−i =

n∑
i=1

z2k−i.

Using this and the definition (6) of {zk}k≥n, we have

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
≤ A

(
1

n

n∑
i=1

z2k−i

)
= zk.

From now on, in addition to (7), we assume that z0 = · · · = zn−1. Due to the monotonicity of {zk}k≥0,
inequality (8) now becomes

zk ≤
1

2
zk−n, k ≥ n. (9)

Using the monotonicity, we can prove that the convergence rate of {zk}k≥0 is at least linear.

Lemma 5 (linear convergence). The convergence rate of {zk}k≥0 is at least linear:

zk+1 ≤
(

1− 3

4n

)
zk, k ≥ n. (10)

Proof. Note that

1

n

n∑
i=1

z2k+1−i =
1

n

n∑
i=1

z2k−i −
1

n
[z2k−n − z2k] =

(
1−

z2k−n − z2k∑n
i=1 z

2
k−i

)(
1

n

n∑
i=1

z2k−i

)
.
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Let us find a lower bound for the fraction. Using
∑n
i=1 z

2
k−i ≤ nz2k−n and (9), we have

z2k−n − z2k∑n
i=1 z

2
k−i
≥ 1− 1/4

n
=

3

4n
.

Thus, we have proved:
1

n

n∑
i=1

z2k+1−i ≤
(

1− 3

4n

)(
1

n

n∑
i=1

z2k−i

)
.

Using this inequality and the definition (6) of {zk}k≥n, we obtain

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
≤
(

1− 3

4n

)
A

(
1

n

n∑
i=1

z2k−i

)
≤
(

1− 3

4n

)
zk.

The next lemma shows that the convergence constant in (10) improves after every n iterations.

Lemma 6 (improving the constant). Suppose that, starting from number k0 ≥ n, the sequence {zk}k≥0
converges linearly to zero with constant q0:

zk+1 ≤ q0zk, k ≥ k0. (11)

Then, starting from number k0 + n, the constant q0 can be replaced with a smaller constant:

zk+1 ≤ q20zk, k ≥ k0 + n.

Proof. Let k ≥ k0 + n. Using the definition (6) of {zk}k≥n and bound (11), we have the following chain
of inequalities:

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
≤ q20A

(
1

n

n∑
i=1

z2k−i

)
≤ q20zk.

Let us summarize the results we have established.

Lemma 7. Let {zk}k≥0 be a recurrent sequence defined in (6). Suppose the initial elements z0, . . . , zn−1
of this sequence are chosen equal to the same number small enough:

z0 = · · · = zn−1 ≤ R.

Then the sequence {zk}k≥0 converges monotonically to zero at a Q-superlinear rate:

zk+1 ≤ qkzk, k ≥ n.

The expressions for R and qk are as follows:

R :=
1

2A
, qk :=

(
1− 3

4n

)2bk/ne−1

.

Proof. Denote q := (1− 3/4n). According to (10) and Lemma 6 we can write the following sequence of
inequalities:

zk+1 ≤ qzk, k ≥ n,
zk+1 ≤ q2zk, k ≥ 2n,

zk+1 ≤ q4zk, k ≥ 3n,

. . .

Combining all these inequalities together, we get

zk+1 ≤ q2
bk/ne−1

zk, k ≥ n.
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3.4 Proof of the theorem
Now we can give the proof of the theorem on the local convergence rate of NIM.

Proof. Consider the sequence {zk}k≥0 defined in (6) with A := Mf/µf . Let us set the initial ele-
ments z0, . . . , zn−1 of this sequence to the same value:

z0 = · · · = zn−1 := max
0≤i≤n−1

‖xi − x∗‖ ≤ R.

According to Lemma 7, the sequence {zk}k≥0 converges monotonically and Q-superlinearly to zero
with constants qk. In particular, it means that {zk}k≥0 always stays bounded:

zk ≤ R ≤
µf

2Mf
, k ≥ 0. (12)

Due to the initial condition (2), we can apply Lemma 3 for k = n − 1. Since, by construction, the
values ‖xi − x∗‖ are bounded above by zi for i = 0, . . . , n−1, we have ‖xn − x∗‖ ≤ zn. In view of (12),
it means that the new iterate xn does not leave the R-vicinity of x∗. Therefore, we can apply Lemma 3
again but for k = n. Using the same reasoning, we conclude that ‖xn+1 − x∗‖ ≤ zn+1 ≤ R, and so on.
Thus, Lemma 3 holds for all k ≥ n− 1 and the sequence {zk}k≥0 majorizes {‖xk − x∗‖}k≥0.

4 Local convergence rate: general case
In this section we consider the more general situation than in Section 3—the case when the objective
function is given in the composite form:

φ(x) :=
1

n

n∑
i=1

fi(x) + h(x). (13)

In this case NIM uses the following model:

mk(x) =
1

n

n∑
i=1

[
fi(v

i
k) +∇fi(vik)>(x− vik) +

1

2
(x− vik)>∇2fi(v

i
k)(x− vik)

]
+ h(x),

where vik are some points that are updated in iterations (one point at every iteration). Using the prox
operator, we can write down the minimum of the model mk as follows:

x̄k := argmin
x∈Rd

mk(x) = proxHkh

(
H−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)

))
,

where Hk := 1
n

∑n
i=1∇2fi(v

i
k). We assume that the subproblem x̄k = argminxmk(x) may be solved

inexactly, i.e. instead of x̄k we actually get some x̂k. We now explain which conditions x̂k must satisfy
using the notions from Nesterov (2013).

Let us treat mk as the composite function: mk(x) =: s(x) + h(x). Denote

TL(x) := argmin
y∈Rd

[
∇s(x)>(y − x) +

L

2
‖y − x‖2 + h(y)

]
,

gL(x) := L(x− TL(x)).

Then we require that x̂k = TL(yk) with yk satisfying

‖gL(yk)‖ ≤

∥∥∥∥∥ 1

n

n∑
i=1

vik − proxh

(
1

n

n∑
i=1

vik −
1

n

n∑
i=1

∇fi(vik)

)∥∥∥∥∥
1+γ

, (14)

where γ ∈ (0, 1] is some constant and L is any number such that L ≥ L0 ≡ 1.
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4.1 Theorem statement
In what follows we prove the following theorem on the local convergence rate of NIM for composite
functions.

Theorem 2 (local convergence rate). Suppose the Hessians∇2fi are Lipschitz-continuous:∥∥∇2fi(x)−∇2fi(y)
∥∥ ≤Mf ‖x− y‖ , i = 1, . . . , n,

for all x, y ∈ Rd. Let {xk}k≥n be the sequence of iterates generated by NIM with the unit step size αk ≡ 1
and cyclic order of component selection. Assume x∗ is a minimizer of (13) with positive definite Hessian:

∇2f(x∗) =
1

n

n∑
i=1

∇2fi(x
∗) ≥ µfI, µf > 0,

and all the initial points x0, . . . , xn−1 are close enough to x∗:

‖xi − x∗‖ ≤ R, i = 0, . . . , n− 1. (15)

Then the sequence {xk}k≥0 converges to x∗ at an R-superlinear rate, i. e. there exists {zk}k≥0 such that

‖xk − x∗‖ ≤ zk, k ≥ 0

zk+1 ≤ qkzk, k ≥ n,

where qk → 0 and z0 = · · · = zn−1 := max0≤i≤n−1 ‖xi − x∗‖.
If the subproblem is solved exactly, then

R :=
µf

2Mf
, qk :=

(
1− 3

4n

)2bk/ne−1

.

Otherwise, if it is solved inexactly using the termination condition (14), then

R := min

 µf
2Mf

,

(
µ3
f

128(2 + Lf )5+2γ

)1/(2γ)
 , qk :=

(
1− 7

16n

)(1+γ)bk/ne/2

,

where Lf is the Lipschitz constant of∇fi:

‖∇fi(x)−∇fi(y)‖ ≤ Lf ‖x− y‖ , i = 1, . . . , n.

for all x, y ∈ Rd.

4.2 Main estimate
When considering local convergence, we assume that NIM uses the unit step length α ≡ 1 at every iteration
and the order of updating the points vik is cyclic:

xk+1 = x̂k,

vik+1 =

{
xk+1 if i = k mod n+ 1

vik otherwise.

Note that the cyclic order of updating means the points vik, i = 1, . . . , n, are exactly the last n iterates
xk, xk−1, . . . , xk−n+1 (but possibly in different order).

Lemma 8. Let x∗ be a minimizer of (13). Then the stopping criterion (14) for solving the subproblem
guarantees the following bound for ‖ek‖ = ‖x̂k − argminxmk(x)‖:

‖ek‖ ≤ λ−1min(Hk)(2 + Lf )2+γ

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)(1+γ)/2

.

8



Proof. The function mk is strongly convex with constant λmin(Hk) and the gradient ∇s of its smooth
(quadratic) part is Lipschitz continuous with constant Lf . Therefore, by Lemma 3 from Nesterov (2013),
we have

‖x̂k − x̄k‖ ≤ λ−1min(Hk)

(
1 +

Lf
L

)
‖gL(y)‖ .

Recall that the constants L in (14) satisfy L ≥ L0 ≡ 1 (by construction). Thus,

‖x̂k − x̄k‖ ≤ λ−1min(Hk)(1 + Lf ) ‖gL(y)‖ .

To finish the proof, it remains to apply inequality (14) together with Lemma 2.

Lemma 9 (main estimate). Let k ≥ n− 1 be the number of the current iteration. Assume the last n points
xk, . . . , xk−n+1 are close enough to x∗,

‖xk−i − x∗‖ ≤
µf

2Mf
, i = 0, . . . , n− 1. (16)

Then for the next generated point xk+1, the following bound holds:

‖xk+1 − x∗‖ ≤
Mf

µf

(
1

n

n−1∑
i=0

‖xk−i − x∗‖2
)

+ E

(
1

n

n−1∑
i=0

‖xk−i − x∗‖2
)(1+γ)/2

, (17)

where E = 0 when the subproblem is solved exactly and E =

√
8(2+Lf )5+2γ

µ3
f

when it is solved using FGM

with stopping criterion (14).

Proof. Denote Hk := (1/n)
∑n
i=1∇2fi(v

i
k).

According to the iteration of NIM, we have: xk+1 = argminxmk(x) + ek, where ek corresponds to
the error in solving the subproblem. Using the definition of the scaled proximal mapping, we can rewrite
this as follows:

xk+1 = proxHkh

(
H−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)vik −

1

n

n∑
i=1

∇fi(vik)

))
+ ek.

Since x∗ is a solution of (13), we have x∗ = proxHkh (x∗ − (1/n)
∑n
i=1∇fi(x∗)). Using this equality

and the non-expansiveness property of proxHkh (·), we get

‖xk+1 − x∗‖Hk ≤

∥∥∥∥∥H−1k
(

1

n

n∑
i=1

∇2fi(v
i
k)[vik − x∗]−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

)∥∥∥∥∥
Hk

+ ‖ek‖Hk

=

∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)[vik − x∗]−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥
H−1
k

+ ‖ek‖Hk .

Using the bounds λ1/2min(B) ‖w‖ ≤ ‖w‖B ≤ λ
1/2
max(B) ‖w‖ in the previous inequality, we obtain

‖xk+1 − x∗‖ ≤
1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)(vik − x∗)−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥+

√
λmax(Hk)

λmin(Hk)
‖ek‖ .

To bound the first term, we use the Taylor formula for gradients and Lipschitz-continuity of∇2fi:

1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∇2fi(v
i
k)(vik − x∗)−

1

n

n∑
i=1

[∇fi(vik)−∇fi(x∗)]

∥∥∥∥∥
=

1

λmin(Hk)

∥∥∥∥∥ 1

n

n∑
i=1

∫ 1

0

[∇2fi(v
i
k)−∇2fi(v

i
k + τ(x∗ − vik))](vik − x∗)dτ

∥∥∥∥∥
≤ Mf

2λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)
.
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To bound the second term, we use Lemma 8:√
λmax(Hk)

λmin(Hk)
‖ek‖ ≤

(2 + Lf )2+γ

λmin(Hk)

√
λmax(Hk)

λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)(1+γ)/2

.

Thus,

‖xk+1 − x∗‖ ≤
Mf

2λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)

+
(2 + Lf )2+γ

λmin(Hk)

√
λmax(Hk)

λmin(Hk)

(
1

n

n∑
i=1

∥∥vik − x∗∥∥2
)(1+γ)/2

.

(18)
Let us estimate the eigenvalues of Hk. Since each function fi has Lipschitz-continuous gradient with

constant Lf , each Hessian ∇2fi(v
i
k) is bounded above by LfI , i.e. λmax(Hk) ≤ Lf . To find the lower

bound for λmin(Hk), we first bound the difference between Hk and∇2f(x∗):

∥∥Hk −∇2f(x∗)
∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

[∇2fi(v
i
k)−∇2fi(x

∗)]

∥∥∥∥∥ ≤ Mf

n

n∑
i=1

∥∥vik − x∗∥∥ .
Since the order of component selection is cyclic, the points vik, i = 1, . . . , n, are exactly the last n iterates
xk−i, i = 0, . . . , n− 1, (possibly rearranged). Therefore,

∥∥Hk −∇2f(x∗)
∥∥ =

Mf

n

n−1∑
i=0

‖xk−i − x∗‖ ≤
µf
2
,

where the inequality follows from (16). Using this bound together with (??), we get

λmin(Hk) ≥ λmin(∇2f(x∗))−
∥∥Hk −∇2f(x∗)

∥∥ ≥ µf
2
.

Thus, λmin(Hk) ≥ µf/2 and λmax(Hk) ≤ Lf . Applying this in (18) and replacing the sums involving
vik with the sums involving xk−i, we get (17).

4.3 Convergence rate of the sequence
Let us investigate the convergence properties of the following (recurrent) sequence arising in (17):

zk := A

(
1

n

n∑
i=1

z2k−i

)
+ E

(
1

n

n∑
i=1

z2k−i

)(1+γ)/2

, k ≥ n, (19)

where A > 0, E ≥ 0, 0 < γ ≤ 1 are some constants.
First, let us understand the conditions under which the sequence {zk}k≥0 (monotonically) converges

to zero. Note that from (19) it follows that

zk ≤ A max
1≤i≤n

{zk−i}2 + E max
1≤i≤n

{zk−i}1+γ =

(
A max

1≤i≤n
{zk−i}+ E max

1≤i≤n
{zk−i}γ

)
max
1≤i≤n

{zk−i},

and the equality may hold when zk−1 = · · · = zk−n. Therefore to guarantee the (monotonic) convergence
of {zk}k≥0 to zero, we must enforce the following condition on the initial elements z0, . . . , zn−1:

Azi + Ezγi < 1, i = 0, . . . , n− 1.

In particular, we may require that

(when E = 0): zi ≤
1

2A
, i = 0, . . . , n− 1.

(when E > 0): zi ≤ min

{
1

2A
,

(
1

4E

)1/γ
}
, i = 0, . . . , n− 1.

(20)
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This will guarantee that

(when E = 0): zk ≤
1

2
max
1≤i≤n

{zk−i}, k ≥ n.

(when E > 0): zk ≤
3

4
max
1≤i≤n

{zk−i}, k ≥ n.
(21)

In what follows we always assume that the initial elements of {zk}k≥0 satisfy (20).
In view of (21), the sequence {zk}k≥0 converges to zero. However, this convergence may be non-

monotonic. For example, if z0 > 0 (but small enough), and z1 = · · · = zn−1 = 0, then zn > zn−1.
Nevertheless, it turns out that if the initial elements of {zk}k≥0 are initialized with the same number,
z0 = · · · = zn−1, then the sequence {zk}k≥0 is monotonic.

Lemma 10 (monotonicity). Let z0 = · · · = zn−1. Then {zk}k≥0 is monotonic: zk+1 ≤ zk for all k ≥ 0.

Proof. According to (21) we have zn ≤ zn−1. Thus, we know that z0 = · · · = zn−1 ≥ zn.
We proceed by induction. Suppose we know that z0 ≥ · · · ≥ zk for some k ≥ n. We will prove that

this implies zk ≥ zk+1. Indeed, according to the induction hypothesis, zk ≤ zk−n. Therefore,

n∑
i=1

z2k+1−i = z2k +

n−1∑
i=1

z2k−i ≤ z2k−n +

n−1∑
i=1

z2k−i =

n∑
i=1

z2k−i.

Using this and the definition (19) of {zk}k≥n, we have

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
+ E

(
1

n

n∑
i=1

z2k+1−i

)(1+γ)/2

≤ A

(
1

n

n∑
i=1

z2k−i

)
+ E

(
1

n

n∑
i=1

z2k−i

)(1+γ)/2

= zk.

From now on, in addition to (20), we assume that z0 = · · · = zn−1. Due to the monotonicity
of {zk}k≥0, inequality (21) now becomes

(when E = 0): zk ≤
1

2
zk−n, k ≥ n.

(when E > 0): zk ≤
3

4
zk−n, k ≥ n.

(22)

Using the monotonicity, we can prove that the convergence rate of {zk}k≥0 is at least linear.

Lemma 11 (linear convergence). The convergence rate of {zk}k≥0 is at least linear:

(when E = 0): zk+1 ≤
(

1− 3

4n

)
zk, k ≥ n.

(when E > 0): zk+1 ≤
(

1− 7

16n

)(1+γ)/2

zk, k ≥ n.
(23)

Proof. Let us consider the case E > 0. The proof of the other case is similar.
Note that

1

n

n∑
i=1

z2k+1−i =
1

n

n∑
i=1

z2k−i −
1

n
[z2k−n − z2k] =

(
1−

z2k−n − z2k∑n
i=1 z

2
k−i

)(
1

n

n∑
i=1

z2k−i

)
.
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Let us find a lower bound for the fraction. Using
∑n
i=1 z

2
k−i ≤ nz2k−n and (22), we have

z2k−n − z2k∑n
i=1 z

2
k−i
≥ 1− 9/16

n
=

7

16n
.

Thus, we have proved:
1

n

n∑
i=1

z2k+1−i ≤
(

1− 7

16n

)(
1

n

n∑
i=1

z2k−i

)
.

Using this inequality and the definition (19) of {zk}k≥n, we obtain

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
+ E

(
1

n

n∑
i=1

z2k+1−i

)(1+γ)/2

≤
(

1− 7

16n

)
A

(
1

n

n∑
i=1

z2k−i

)
+

(
1− 7

16n

)(1+γ)/2

E

(
1

n

n∑
i=1

z2k−i

)(1+γ)/2

≤
(

1− 7

16n

)(1+γ)/2

zk.

The next lemma shows that the convergence constant in (23) improves after every n iterations.

Lemma 12 (improving the constant). Suppose that, starting from number k0 ≥ n, the sequence {zk}k≥0
converges linearly to zero with constant q0:

zk+1 ≤ q0zk, k ≥ k0. (24)

Then, starting from number k0 + n, the constant q0 can be replaced with a smaller constant:

(when E = 0): zk+1 ≤ q20zk, k ≥ k0 + n.

(when E > 0): zk+1 ≤ q1+γ0 zk, k ≥ k0 + n.

Proof. Again, we consider only the case E > 0. The other case is similar.
Let k ≥ k0 + n. Using the definition (19) of {zk}k≥n and bound (24), we have the following chain of

inequalities:

zk+1 = A

(
1

n

n∑
i=1

z2k+1−i

)
+ E

(
1

n

n∑
i=1

z2k+1−i

)(1+γ)/2

≤ q20A

(
1

n

n∑
i=1

z2k−i

)
+ q1+γ0 E

(
1

n

n∑
i=1

z2k−i

)(1+γ)/2

≤ q1+γ0 zk.

Let us summarize the results we have established.

Lemma 13. Let {zk}k≥0 be a recurrent sequence defined in (19). Suppose the initial elements z0, . . . , zn−1
of this sequence are chosen equal to the same number small enough:

z0 = · · · = zn−1 ≤ R.

Then the sequence {zk}k≥0 converges monotonically to zero at a Q-superlinear rate:

zk+1 ≤ qkzk, k ≥ n.

12



The expressions for R and qk are as follows:

(when E = 0): R :=
1

2A
, qk :=

(
1− 3

4n

)2bk/ne−1

.

(when E > 0): R := min

{
1

2A
,

(
1

4E

)1/γ
}
, qk :=

(
1− 7

16n

)(1+γ)bk/ne/2

.

Proof. Consider the case E > 0.
Denote q := (1 − 7/16n)1/2. According to (23) and Lemma 12 we can write the following sequence

of inequalities:
zk+1 ≤ q1+γzk, k ≥ n,

zk+1 ≤ q(1+γ)
2

zk, k ≥ 2n,

zk+1 ≤ q(1+γ)
3

zk, k ≥ 3n,

. . .

Combining all these inequalities together, we get

zk+1 ≤ q(1+γ)
bk/ne

zk, k ≥ n.

4.4 Proof of the theorem
Proof. Consider the sequence {zk}k≥0 defined in (19) with

A :=
Mf

µf
, E :=

√
8(2 + Lf )5+2γ

µ3
f

.

Let us set the initial elements z0, . . . , zn−1 of this sequence to the same value:

z0 = · · · = zn−1 := max
0≤i≤n−1

‖xi − x∗‖ ≤ R.

According to Lemma 13, the sequence {zk}k≥0 converges monotonically and Q-superlinearly to zero
with constants qk. In particular, it means that {zk}k≥0 always stays bounded:

zk ≤ R ≤
µf

2Mf
, k ≥ 0. (25)

Due to the initial condition (15), we can apply Lemma 9 for k = n − 1. Since, by construction, the
values ‖xi − x∗‖ are bounded above by zi for i = 0, . . . , n−1, we have ‖xn − x∗‖ ≤ zn. In view of (25),
it means that the new iterate xn does not leave the R-vicinity of x∗. Therefore, we can apply Lemma 9
again but for k = n. Using the same reasoning, we conclude that ‖xn+1 − x∗‖ ≤ zn+1 ≤ R, and so on.
Thus, Lemma 9 holds for all k ≥ n− 1 and the sequence {zk}k≥0 majorizes {‖xk − x∗‖}k≥0.

5 Global rate of convergence
We consider minimizing

φ(x) :=
1

n

n∑
i=1

fi(x) + h(x).

In this section we give a proof of the global convergence of NIM in the particular case when h(x) is an
`2-regularizer, h(x) = µ

2 ‖x‖
2, and there is no inexactness in finding the minimum of the model.
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Our proof is based on the work by Gurbuzbalaban et al. (2015). To analyze NIM, we view it as a
perturbed scaled gradient method. In the following we use the notation

Ak :=
1

n

n∑
i=1

∇2fi(v
i
k) + µI.

Also we can rewrite the step of NIM as follows:

xk+1 = xk + αpk, (26)

where pk is the search direction of NIM:

pk := x̄k − xk = A−1k (uk − gk −Akxk)

= A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)(vik − xk)− 1

n

n∑
i=1

∇fi(vik)− µxk

)
.

Denote the search direction of the scaled gradient method as

pSGk := −A−1k ∇φ(xk).

Then (26) can be rewritten as:
xk+1 = xk + αpSGk + αek,

where ek is the error in the approximation of pSGk by pk:

ek := pk − pSGk .

Lemma 14. For a twice continuously differentiable strongly convex function φwith constant µ and Lipschitz-
continuous gradient with constant L we have the following bounds:

1

L
‖∇φ(x)‖2 ≤ ‖x− x

∗‖2 ≤
1

µ
‖∇φ(x)‖2

and
1

2L
‖∇φ(x)‖22 ≤ φ(x)− φ(x∗) ≤ 1

2µ
‖∇φ(x)‖22 .

where x∗ is the optimum of φ.

In what follows we assume that n ≥ 2.

5.1 Bounding the norm of the error
Lemma 15.

‖ek‖2 ≤
2L

µ
max

j=k−n+1,...,k−1
‖xj − xk‖2

and
‖ek‖2 ≤

4L

µ2
max

j=k−n+1,...,k
‖∇φ(xj)‖2

Proof.

ek = A−1k

(
1

n

n∑
i=1

∇2fi(v
i
k)(vik − xk)− 1

n

n∑
i=1

[
∇fi(vik)−∇fi(xk)

])
.

Taking the norms, we get

‖ek‖2 ≤
∥∥A−1k ∥∥2

(
1

n

n∑
i=1

∥∥∇2fi(v
i
k)
∥∥
2

∥∥vik − xk∥∥2 +
1

n

n∑
i=1

∥∥∇fi(vik)−∇fi(xk)
∥∥
2

)
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By the Lipschitz-continuity of ∇fi, we have that
∥∥∇2fi(v

i
k)
∥∥
2
≤ L and

∥∥∇fi(vik)−∇fi(xk)
∥∥
2
≤

L
∥∥vik − xk∥∥2. Also

∥∥A−1k ∥∥ ≤ (1/µ). So

‖ek‖2 ≤
2L

µn

n∑
i=1

∥∥vik − xk∥∥2 .
Since the order of component selection is cyclic,

n∑
i=1

∥∥vik − xk∥∥2 =

k∑
j=k−n+1

‖xj − xk‖2 .

Then

‖ek‖2 ≤
2L

µn

k∑
j=k−n+1

‖xj − xk‖2

≤ 2L

µ
max

j=k−n+1,...,k
‖xj − xk‖2

=
2L

µ
max

j=k−n+1,...,k−1
‖xj − xk‖2 .

The second inequality follows from the triangle inequality

‖xj − xk‖2 ≤ ‖xj − x
∗‖+ ‖xk − x∗‖ .

First, we bound the norm of the error by a term proportional to the step length and the norms of the
gradients at the previous points.

Lemma 16.
‖ek‖2 ≤

2L(4L+ µ)(n− 1)α

µ3
max

t=k−2n+2,...,k−1
‖∇φ(xt)‖2 .

Proof. Now for any j = k − n+ 1, . . . , k − 1:

‖xj − xk‖2 =

∥∥∥∥∥∥
k−1∑
s=j

[xs − xs+1]

∥∥∥∥∥∥
2

≤
k−1∑
s=j

‖xs − xs+1‖2 ≤
k−1∑

s=k−n+1

‖xs − xs+1‖2 .

For the difference of successive points we have:

‖xs − xs+1‖2 ≤ α
(∥∥pSGs ∥∥2 + ‖es‖2

)
For the first term, ∥∥pSGs ∥∥2 ≤ ∥∥A−1s ∥∥2 ‖∇φ(xs)‖2 ≤

1

µ
‖∇φ(xs)‖2 .

For the second term we use the previous lemma:

‖es‖2 ≤
4L

µ2
max

t=s−n+1,...,s−1
‖∇φ(xt)‖2 .

Therefore,

‖xs − xs+1‖2 ≤
α(4L+ µ)

µ2
max

t=s−n+1,...,s
‖∇φ(xt)‖2

So

‖xj − xk‖2 ≤
α(4L+ µ)

µ2

k−1∑
s=k−n+1

max
t=s−n+1,...,s

‖∇φ(xt)‖2

≤ α(n− 1)(4L+ µ)

µ2
max

t=k−2n+2,...,k−1
‖∇φ(xt)‖2 .
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Finally,

‖ek‖2 ≤
2L(4L+ µ)(n− 1)α

µ3
max

t=k−2n+2,...,k−1
‖∇φ(xt)‖2 .

5.2 Proof of the theorem about global convergence
Note that φ has Lipschitz-continuous gradient with constant L+ µ.

Proof. By Lipschitz-continuity of the gradient we have

φ(xk+1)− φ(xk) ≤ ∇φ(xk)>(xk+1 − xk) +
L+ µ

2
‖xk+1 − xk‖22

= −α∇φ(xk)>A−1k ∇φ(xk) + α∇φ(xk)>ek

+
(L+ µ)α2

2

∥∥pSGk ∥∥22 +
(L+ µ)α2

2
‖ek‖22 + (L+ µ)α2(pSGk )>ek

Now we bound each term above in terms of the norms of the previous gradients.
For the first term, using λmax(Ak) ≤ L+ µ, we have

−α∇φ(xk)>A−1k ∇φ(xk) ≤ − α

L+ µ
‖∇φ(xk)‖22 .

For the second term we use the Cauchy-Schwarz inequality and bound for ‖ek‖2:

α∇φ(xk)>ek ≤ α ‖∇φ(xk)‖2 ‖ek‖2

≤ 2L(4L+ µ)(n− 1)α2

µ3
max

t=k−2n+2,...,k
‖∇φ(xt)‖22 .

For the third term we use the bound
∥∥pSGk ∥∥2 ≤ ∥∥A−1k ∥∥2 ‖∇φ(xk)‖2:

(L+ µ)α2

2

∥∥pSGk ∥∥22 ≤ (L+ µ)α2

2µ2
‖∇φ(xk)‖22 .

For the fourth term we use the lemma:

(L+ µ)α2

2
‖ek‖22 ≤

4L2(L+ µ)(4L+ µ)2(n− 1)2α4

2µ6
max

t=k−2n+2,...,k−1
‖∇φ(xt)‖22 .

For the firth term we use the Cauchy-Schwarz inequality and the lemma:

(L+ µ)α2(pSGk )>ek ≤ (L+ µ)α2
∥∥pSGk ∥∥2 ‖ek‖2

≤ 2L(L+ µ)(4L+ µ)(n− 1)α3

µ4
max

t=k−2n+2,...,k
‖∇φ(xt)‖22 .

Combining all these bounds, we get

φ(xk+1)− φ(xk) ≤
(
− α

L+ µ
+

(L+ µ)α2

2µ2

)
‖∇φ(xk)‖22

+
2L(4L+ µ)(n− 1)

µ3

(
α2 +

(L+ µ)α3

µ
+

2L(L+ µ)(4L+ µ)(n− 1)α4

2µ3

)
max

t=k−2n+2,...,k
‖∇φ(xt)‖22 .

Now bound the gradients in terms of function values:

‖∇φ(xk)‖22 ≥ 2µ [φ(xk)− φ(x∗)] and max
t=k−2n+2,...,k

‖∇φ(xt)‖2 ≤ 2(L+µ) max
t=k−2n+2

[φ(xk)− φ(x∗)]

For α ≤ 2(µ/(L+ µ))2 the coefficient before ‖∇φ(xk)‖2 is non-positive.
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Denote Vk := φ(xk)− φ(x∗). Then we have proved the following bound:

Vk+1 ≤ p(α)Vk + q(α) max
t=k−2n+2,...,k

Vt

where

p(α) := 1− µα

L+ µ
+

(L+ µ)α2

2µ
,

q(α) :=
2L(L+ µ)(4L+ µ)(n− 1)

µ3

(
α2 +

(L+ µ)α3

µ
+

2L(L+ µ)(4L+ µ)(n− 1)α4

2µ3

)
.

Using lemma 3.2 of Gurbuzbalaban et al. (2015) we have that for α small enough p(α) + q(α) < 1 and
that Vk converges linearly with constant c := (p+ q)1/(1+2(n−1)).

6 Order of component selection
There are two standard strategies in NIM for choosing the component ik to update: 1) cyclic when ik =
(k mod n) + 1, and 2) randomized when at every iteration ik ∈ {1, . . . , n} is chosen uniformly at random.
In all our experiments we observed that NIM always converges faster under the cyclic order. Here we
analyse this situation.

Let’s consider a particular function φ(x) for optimization using NIM:

φ(x) =
1

n

n∑
i=1

fi(x) =
1

2
‖x‖2 +

1

3
‖x‖3, (27)

f1(x) =
1

2
‖x‖2 +

n

3
‖x‖3, fi(x) =

1

2
‖x‖2, i > 1.

Lemma 17. Using NIM with unit step size and exact model minimization for function (27) leads to the
following iterate:

xk+1 =
‖v1k‖

1 + 2‖vk‖
v1k.

Proof. Using unit step size means that the next iterate xk+1 in NIM coincides with exact minimum of the
model mk(x). This minimum can be found as follows:

xk+1 = H−1k (uk − gk). (28)

Here all the values Hk, uk, gk for the function (27) can be calculated directly:

Hk =
1

n

n∑
i=1

∇2fi(v
i
k) = I + ‖v1k‖I +

(v1k)(v1k)T

‖v1k‖
,

gk =
1

n

n∑
i=1

∇fi(vik) =
1

n

n∑
i=1

vik + ‖v1k‖v1k,

uk =
1

n

n∑
i=1

∇2fi(v
i
k)vik =

1

n

n∑
i=1

vik + 2‖v1k‖v1k.

Substituting these expressions into (28), we obtain:

Hkxk+1 =

(
I + ‖v1k‖I +

(v1k)(v1k)T

‖v1k‖

)
xk+1 = (1 + ‖v1k‖)xk+1 +

(v1k)Txk+1

‖v1k‖
v1k = uk − gk = ‖v1k‖v1k.

(29)
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This result means that xk+1 can be represented as αv1k for some scalar α. Substituting αv1k instead of xk+1

into (29) and finding α, we obtain:

xk+1 =
‖v1k‖

1 + 2‖vk‖
v1k.

Now we are ready to prove the main theorem:

Theorem 3. Using NIM with randomized order for the function (27) with center initialization ‖v1k‖ < 1
leads to the following lower bound:

E[‖xk+1‖] ≥
1

3

(
1− 1

n

)k
E[‖v10‖2].

Proof. From the last lemma and using condition ‖v1k‖ < 1 we have:

‖xk+1‖ =
‖v1k‖2

1 + 2‖vk‖
≥ ‖v

1
k‖2

3
. (30)

Let’s denote ξk := E[‖xk+1‖2] and δk := E[‖v1k‖2], where expectation is taken w.r.t. all components
selections at all iterations. In NIM we have the following update rule for the next center:

vik+1 = xk+1I[i = ik] + vikI[i 6= ik],

where I[·] is indicator function. Now we can obtain recalculation formula for δk:

δk+1 = E[‖vk+1‖2] =
1

n
E[‖xk+1‖2] +

(
1− 1

n

)
E[‖v1k‖2] = (1− q)ξk+1 + qδk,

where q = 1− 1/n. Also δ0 = ‖v10‖2. Using this recalculation formula several times, we obtain:

δk = (1− q)ξk + qδk−1 = (1− q)ξk + q((1− q)ξk−1 + qδk−2) =

= (1− q)ξk︸ ︷︷ ︸
≥0

+ q(1− q)ξk−1︸ ︷︷ ︸
≥0

+ q2(1− q)ξk−2︸ ︷︷ ︸
≥0

+ · · ·+ qk−1(1− q)ξ1︸ ︷︷ ︸
≥0

+qkδ0 ≥ qkδ0.

Using (30) we come to the theorem statement:

E[‖xk+1‖] ≥
1

3
δk ≥

1

3
qkδ0.

This theorem proves that NIM with random order can at best have a linear convergence rate. Meanwhile
using NIM with cyclic order for the function (27) gives the following upper bound:

‖xk+1‖ ≤ ‖v1k‖2,

that is equivalent to Q-quadratic convergence w.r.t epochs and R-superlinear convergence w.r.t. iterations.
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