Инкрементальный метод Ньютона для больших сумм функций

Родоманов А.О.

Высшая школа экономики

Группа байесовских методов

29 октября 2016 Семинар «Стохастический анализ в задачах», НМУ, Москва

Введение

Рассматриваемая задача:

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Пример (Минимизация эмпирического риска):

- ▶ Имеются наблюдения a_i и их метки β_i .
- ▶ Цель: найти оптимальные параметры x^* параметрической модели.
- ▶ Линейная регрессия ($a_i \in \mathbb{R}^d, \ \beta_i \in \mathbb{R}$):

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} (\langle a_i, x \rangle - \beta_i)^2.$$

▶ Логистическая регрессия $(a_i \in \mathbb{R}^d, \ \beta_i \in \{-1, 1\})$:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-\beta_i \langle a_i, x \rangle)).$$

Мотивация

Рассматриваем методы, которые на каждой итерации вычисляют лишь одну функцию f_i (вместо всей суммы):

- ightharpoonup Методы стохастической оптимизации для $\min\limits_{x}\mathbb{E}_{\xi}f(x;\xi)$:
 - ► Примеры: SGD [Robbins-Monro, 1951], oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] и др.
 - ▶ Итерация: $x_{k+1} = x_k \alpha_k B_k \nabla f_{i_k}(x_k)$.
 - Скорость сходимости: сублинейная, обычно O(1/k).
- ▶ Специальные градиентные методы для $\min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$:
 - Примеры: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] и др.
 - Основная идея: уменьшение дисперсии со временем.
 - ▶ **Скорость сходимости:** линейная, $O(c^k)$.

Цель: метод с суперлинейной сходимостью.

Meтод SAG [Le Roux et al., 2012]

Задача:
$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$
.

Stochastic Average Gradient (SAG):

Выбрать
$$i_k \in \{1,\dots,n\}$$
 случайно (равномерно)
Обновить $y_k^i = \begin{cases} \nabla f_i(x_k) & \text{если } i=i_k \\ y_{k-1}^i & \text{иначе} \end{cases}$
$$g^k = g^{k-1} + \frac{1}{n}(y_k^{i_k} - y_{k-1}^{i_k})$$

$$x_{k+1} = x_k - \gamma g^k$$

Идея метода NIM

Задача:
$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$
.

Идея:

ightharpoonup Для каждой f_i рассмотрим ее квадратичную модель:

$$m_k^i(x) := f_i(v_k^i) + \langle \nabla f_i(v_k^i), x - v_k^i \rangle + \frac{1}{2} \langle \nabla^2 f_i(v_k^i)(x - v_k^i), x - v_k^i \rangle.$$

- ▶ Тогда модель для f равна $m_k(x) := \frac{1}{n} \sum_{i=1}^n m_k^i(x)$.
- ▶ Выбрать x_{k+1} как минимум модели:

$$x_{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} m_k(x).$$

lacktriangle Обновить только одну точку v_k^{j} : выбрать $i_k \in \{1,\dots,n\}$ и изменить

$$v_k^i = egin{cases} x_k & ext{если } i = i_k, \ v_{k-1}^i & ext{иначе.} \end{cases}$$

Обновление модели в методе NIM

Модель целевой функции:

$$m_k(x) = \frac{1}{n} \sum_{i=1}^n [f_i(v_k^i) + \langle \nabla f_i(v_k^i), x - v_k^i \rangle + \frac{1}{2} \langle \nabla^2 f_i(v_k^i)(x - v_k^i), x - v_k^i \rangle]$$

Заметим: m_k является квадратичной функцией,

$$m_k(x) = \frac{1}{2}\langle H_k x, x \rangle + \langle g_k - u_k, x \rangle + \text{const},$$

и полностью определяется следующими тремя величинами

$$H_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i), \ g_k := \frac{1}{n} \sum_{i=1}^n \nabla f_i(v_k^i), \ u_k := \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(v_k^i) v_k^i.$$

Поскольку всегда обновляется только одна компонента, то

$$H_{k} = H_{k-1} + \frac{1}{n} \left[\nabla^{2} f_{i}(v_{k}^{i}) - \nabla^{2} f_{i}(v_{k-1}^{i}) \right],$$

$$g_{k} = g_{k-1} + \frac{1}{n} \left[\nabla f_{i}(v_{k}^{i}) - \nabla f_{i}(v_{k-1}^{i}) \right],$$

$$u_{k} = u_{k-1} + \frac{1}{n} \left[\nabla^{2} f_{i}(v_{k}^{i}) v_{k}^{i} - \nabla^{2} f_{i}(v_{k-1}^{i}) v_{k-1}^{i} \right].$$

Итоговая схема метода NIM

Задача:
$$\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$
.

Инкрементальный метод Ньютона (NIM):

Взять
$$i_k = k \bmod n + 1$$
Обновить $v_k^i = \begin{cases} x_k & \text{если } i = i_k \\ v_{k-1}^i & \text{иначе} \end{cases}$

$$H_k = H_{k-1} + \frac{1}{n} \left[\nabla^2 f_i(v_k^i) - \nabla^2 f_i(v_{k-1}^i) \right],$$

$$g_k = g_{k-1} + \frac{1}{n} \left[\nabla f_i(v_k^i) - \nabla f_i(v_{k-1}^i) \right],$$

$$u_k = u_{k-1} + \frac{1}{n} \left[\nabla^2 f_i(v_k^i) v_k^i - \nabla^2 f_i(v_{k-1}^i) v_{k-1}^i \right]$$
Вычислить $x_{k+1} = H_k^{-1}(u_k - g_k).$

Суперлинейная сходимость метода NIM

Теорема: Пусть $\nabla^2 f_i$ удовлетворяют условию Липшица:

$$\|\nabla^2 f_i(x) - \nabla^2 f_i(y)\| \le M\|x - y\|, \qquad \forall x, y \in \mathbb{R}^d.$$

Предположим, что x^* — невырожденная точка минимума:

$$\nabla^2 f(x^*) = \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*) \succeq \mu I, \qquad \mu > 0,$$

и начальные точки x_0, \dots, x_{n-1} лежат достаточно близко к x^* :

$$||x_i-x^*||\leq \frac{\mu}{2M}.$$

Тогда последовательность $\{x_k\}$ сходится к x^* с R-суперлинейной скоростью, т.е. существует $\{z_k\}$, что

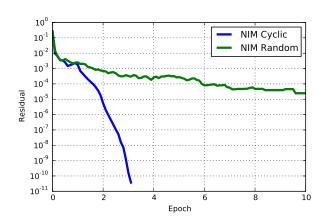
$$||x_k - x^*|| \le z_k, \qquad z_{k+1} \le \left(1 - \frac{3}{4n}\right)^{2^{\lceil k/n \rceil - 1}} z_k.$$

Кроме этого, имеет место n-шаговая квадратичная сходимость:

$$z_{k+n} \leq \frac{M}{\mu} z_k^2$$
.

Порядок выбора компонент

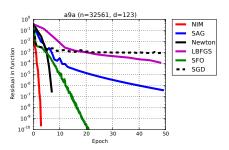
Сравнение циклического и случайного порядков:

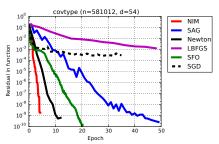


Экспериментальное сравнение – 1

Логистическая регрессия с L2-регуляризатором:

$$f(x) := \frac{1}{n} \sum_{i=1}^n \ln(1 + \exp(-\beta_i \langle a_i, x \rangle)) + \frac{\mu}{2} ||x||^2.$$





Результаты экспериментов – 2

	a9a (n=32561, d=123)					covtype (n=581012, d=54)				
Res	NIM	SAG	Newton	LBFGS	SFO	NIM	SAG	Newton	LBFGS	SFO
			.31s					.84s		
10^{-2}	.02s	.05s	.56s .73s	.10s	.08s	.51s	.96s	1.78s	1.77s	.25s
10^{-3}	.12s	.11s	.73s	.18s	.57s	.72s	1.58s	2.39s	5.67s	1.02s
10^{-4}	.15s	.19s	.81s	.43s	.98s	.86s	2.45s	3.09s	10.73s	3.80s
10^{-5}	.21s	.36s	.90s	.76s	1.34s	1.20s	3.37s	3.99s	19.07s	5.23s
10^{-6}	.24s	.66s	.93s	1.11s	1.57s	1.49s	4.12s	4.57s	31.84s	6.81s
			1.00s			1		5.13s		
10^{-8}	.31s	1.46s	1.04s	1.82s	2.18s	1.92s	5.90s	6.52s	-	9.86s
10^{-9}	.32s	1.90s	1.04s	2.26s	2.46s	2.10s	7.34s	7.64s	-	11.30s
10^{-10}	.34s	2.38s	1.04s 1.04s	2.61s	2.81s	2.12s	9.97s	8.84s	-	12.44s

Результаты экспериментов – 3

	alpha	a (n=50	00000, d=	=500)	mnist8m (n=8100000, d=784)				
Res	NIM	SAG	Newton	LBFGS	NIM	SAG	Newton	LBFGS	
10^{-1}	1.91s	1.36s	1.6m	4.01s	57.68s	34.91s	47.8m	1.1m	
10^{-2}	13.37s	6.72s	2.6m	17.68s	1.6m	2.1m	1.4h	5.2m	
10^{-3}	28.56s	17.73s	3.0m	37.70s	3.2m	3.9m	-	22.9m	
10^{-4}	36.65s	36.04s	3.4m	58.35s	16.7m	7.1m	-	1.6h	
10^{-5}	46.66s	1.0m	3.6m	1.4m	26.7m	1.0h	-	-	
10^{-6}	53.92s	1.5m	4.0m	1.9m	33.5m	-	-	-	
10^{-7}	57.63s	2.0m	4.0m	2.4m	40.1m	-	-	-	
10^{-8}	1.0m	2.7m	4.1m	2.8m	46.0m	-	-	-	
10^{-9}	1.1m	3.5m	4.3m	3.2m	49.6m	-	-	-	
10^{-10}	1.2m	4.3m	4.7m	3.4m	53.3m	-	-	-	