Optimization Methods for Big Sums of Functions

Anton Rodomanov

Higher School of Economics

Bayesian methods research group (http://bayesgroup.ru)

5 June 2016

Skoltech Deep Machine Intelligence Workshop, Moscow, Russia

Introduction

Consider the problem

Find
$$f^* = \min_{x \in \mathbb{R}^d} f(x)$$
 with $f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)$,

Example (Empirical risk minimization):

- We are given observations a_i (and possibly their labels β_i).
- ► Goal: find optimal parameters *x*^{*} of a parametric model.
- Linear regression ($a_i \in \mathbb{R}^d, \ \beta_i \in \mathbb{R}$):

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \left\| \boldsymbol{a}_{i}^{\top} \boldsymbol{x} - \boldsymbol{\beta}_{i} \right\|^{2}$$

• Logistic regression $(a_i \in \mathbb{R}^d, \beta_i \in \{-1, 1\})$:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-\beta_i a_i^{\top} x))$$

Neural networks, SVMs, CRFs etc.

Preliminaries

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Goal: Given $\epsilon > 0$, find \bar{x} such that $f(\bar{x}) - f^* \leq \epsilon$.

Assumptions:

► Each function
$$f_i$$
 is *L-smooth*:
 $\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$

Function f is
$$\mu$$
-strongly convex:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2, \qquad \forall x, y \in \mathbb{R}^d.$$

Strong convexity of f implies existence of a unique $x^* : f(x^*) = f^*$. We consider iterative methods which produce $\{x^k\}_{k>0} : x^k \to x^*$. Gradient descent and big sums of functions

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Gradient descent:

$$x^{k+1} = x^k - \eta \nabla f(x^k)$$
$$\nabla f(x^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k)$$

Here $\eta \in \mathbb{R}_{++}$ is a step length.

Note:

- Computation of $\nabla f(x^k)$ requires O(nd) operations.
- ▶ When *n* is very large, this may take a lot of time. Example: $n = 10^8$, $d = 1000 \Rightarrow$ evaluating $\nabla f(x^k)$ takes ≥ 2 minutes.
- We need methods with cheaper iterations.

Stochastic gradient descent [Robbins & Monro, 1951]

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x)$$
, $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

Stochastic Gradient Descent (SGD):

Choose $i_k \in \{1, ..., n\}$ uniformly at random $x^{k+1} = x^k - \eta_k \nabla f_{i_k}(x^k).$

Here $\{\eta_k\}_{k\geq 0} \subseteq \mathbb{R}_{++}$ is a sequence of step lengths converging to 0.

Motivation: $\mathbb{E}_{i_k}[\nabla f_{i_k}(x^k)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) = \nabla f(x^k)$, i.e., on average, SGD makes a step in the right direction.

Note:

- Now we only need to compute one gradient instead of n.
- Iteration complexity: O(d). Independent of n!
- ▶ No reliable stopping criterion (cannot compute $\|\nabla f(x_k)\|$).

Gradient descent vs SGD: Which one is better?

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Iteration cost:

- Gradient descent: O(nd).
- ▶ SGD: *O*(*d*).

• Gradient descent: *linear*, $O\left(nd\frac{L}{\mu}\ln\frac{1}{\epsilon}\right)$ flops for ϵ -solution.

log(Residual)

► SGD: sublinear, $O(\frac{d}{\mu\epsilon})$ flops for ϵ -solution.

Discussion:

- Complexity of SGD does not depend on n.
- SGD is good for large ϵ and terrible for small ϵ .

sublinear

Slow convergence of SGD: Why?

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Example (Least squares): $f_i(x) := (a_i^\top x - b_i)^2$

Main reason for slow convergence of SGD is the variance

$$\sigma_k^2 := \mathbb{E}_i \left[\left\| \nabla f_i(x^k) - \nabla f(x^k) \right\|^2 \right]$$

Note that even if $x^k \to x^*$ we have $\sigma_k \to \sigma > 0$.

Towards a hybrid method

Gradient descent: O(nd) iteration cost, linear convergence. **SGD:** O(d) iteration cost, sublinear convergence.

Goal: O(d) iteration cost, linear convergence.

Credit: Nicolas Le Roux et al.

Methods: SAG [Le Roux et al., 2012], SVRG [Johnson & Zhang, 2013], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc. We only consider SVRG as the most practical one for a general f_i . **Main idea:** variance reduction, $\mathbb{E}_i[||g_i^k - \nabla f(x^k)||^2] \rightarrow 0.$ Stochastic Variance Reduced Gradient [Xiao & Zhang, 2014]

Problem:
$$f^* = \min_{x \in \mathbb{R}^d} f(x), \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Require:
$$\tilde{x}^{0}$$
: initial point; m : update frequency; η : step length.
for $s = 0, 1, ...$ do
 $\tilde{g}^{s} := \nabla f(\tilde{x}^{s}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{x}^{s})$
 $x^{0} := \tilde{x}^{s}$
for $k = 0, ..., m - 1$ do
Choose $i_{k} \in \{1, ..., n\}$ uniformly at random
 $x^{k+1} := x^{k} - \eta(\nabla f_{i_{k}}(x^{k}) - \nabla f_{i_{k}}(\tilde{x}^{s}) + \tilde{g}^{s})$
end for
 $\tilde{x}^{s+1} := \frac{1}{m} \sum_{k=1}^{m} x^{k}$ (or $\tilde{x}^{s+1} := x^{m}$)
end for

Parameters: usually m = O(n), $\eta = O(\frac{1}{L})$; e.g. m = 2n, $\eta = \frac{1}{10L}$.

Note:

- Works with a constant step length.
- Reliable stopping criterion: $\|\tilde{g}^s\|^2 \leq \tilde{\epsilon}$.

Variance reduction in SVRG

Denote
$$g_i := \nabla f_i(x) - \nabla f_i(\tilde{x}) + \nabla f(\tilde{x}).$$

Then g_i is an unbiased estimate of $\nabla f(x)$:
 $\mathbb{E}_i[\nabla f_i(x) - \nabla f_i(\tilde{x}) + \nabla f(\tilde{x})] = \nabla f(x) - \nabla f(\tilde{x}) + \nabla f(\tilde{x}) = \nabla f(x).$

Variance:

$$\sigma^{2} := \mathbb{E}_{i} \left[\|g_{i} - \nabla f(x)\|^{2} \right]$$

$$= \mathbb{E}_{i} \left[\|(\nabla f_{i}(x) - \nabla f_{i}(\tilde{x})) - (\nabla f(x) - \nabla f(\tilde{x}))\|^{2} \right]$$

$$(\|a + b\|^{2} \le 2 \|a\|^{2} + 2 \|b\|^{2})$$

$$\le 2\mathbb{E}_{i} \left[\|\nabla f_{i}(x) - \nabla f_{i}(\tilde{x})\|^{2} \right] + 2 \|\nabla f(x) - \nabla f(\tilde{x})\|^{2}$$

$$\le 2L^{2} \|x - \tilde{x}\|^{2} + 2L^{2} \|x - \tilde{x}\|^{2}$$

$$= 4L^{2} \|x - \tilde{x}\|^{2}.$$

Note: when $x \to x^*$ and $\tilde{x} \to x^*$, then $\sigma \to 0$. In plain SGD we had $g_i = \nabla f_i(x)$ and so $\sigma \not\to 0$ when $x \to x^*$.

SVRG: Convergence analysis [Xiao & Zhang, 2014] Theorem

Let $\eta < \frac{1}{4L}$ and m is sufficiently large so that $\rho := \frac{1}{\mu\eta(1 - 4L\eta)m} + \frac{4L\eta(m+1)}{(1 - 4L\eta)m} < 1.$ Then SVRG converges at a linear rate: $\mathbb{E}[f(\tilde{x}^{s})] - f^{*} \le \rho^{s}[f(\tilde{x}^{0}) - f^{*}].$

Discussion:

- Let us choose $\eta = \frac{1}{10L}$ and assume $m \gg 1$. Then $4L\eta = \frac{2}{5}$ and $\rho \approx \frac{50\frac{L}{\mu}}{3m} + \frac{2}{3}$
- ▶ To ensure $\rho < 1$, let us choose $m = 100\frac{L}{\mu}$. Then $\rho \approx \frac{5}{6}$.
- To reach ϵ , we need to perform $s = O(\ln \frac{r}{\epsilon})$ epochs.
- Complexity of each epoch: $O((n+m)d) = O((n+\frac{L}{\mu})d)$.
- Thus total complexity is $O\left((n+\frac{L}{\mu})d\ln\frac{1}{\epsilon}\right)$.

• Recall that for gradient descent we had $O\left(\left(n\frac{L}{\mu}\right)d\ln\frac{1}{\epsilon}\right)$.

Practical performance [Allen-Zhu & Hazan, 2016]

Figure: Training Error Comparison on neural nets. Y axis: training objective value; X axis: number of passes over dataset.

Conclusion

- SGD is a general method which is suitable for any stochastic optimization problem.
- However, SGD has a sublinear rate of convergence. The main reason for that is the large variance in estimating the gradient which does not decrease with time.
- For the special case of finite sums of functions it is possible to design SGD-like methods which reduce the variance when they progress. This allows them to achieve a linear rate of convergence.
- This variance reduction has an effect only after multiple passes through the data.
- If one can perform only a couple passes through the data, then SGD is an optimal method. If several passes through the data are allowed, variance reducing methods (e.g. SVRG) work much better.

Thank you!

References

Original paper on SVRG:

R. Johnson & T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction, NIPS 2013.

SVRG for composite functions:

L. Xiao & T. Zhang. A Proximal Stochastic Gradient Method with Progressive Variance Reduction. SIAM Journal on Optimization, 2014.

Practical improvements for SVRG:

R. Babanezhad et al.. Stop Wasting My Gradients: Practical SVRG, NIPS 2015.

- Theory of SVRG for non-strongly convex and non-convex functions:
 - J. Reddi et al.. Stochastic Variance Reduction for Nonconvex Optimization, ICML 2016.
 - Z. Allen-Zhu & Y. Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives, ICML 2016.

 Z. Allen-Zhu & E. Hazan. Variance Reduction for Faster Non-Convex Optimization, ICML 2016.