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Abstract

Recently Allen-Zhu and Orecchia [2014] have proposed a new way of deriving Nesterov’s
fast gradient method (FGM). They showed that FGM can be viewed as a special convex
combination of the primal gradient method and mirror descent. In this work we extend the
method of Allen-Zhu and Orecchia [2014] in two directions: 1) we generalize the method to
the class of composite convex functions; 2) we modify the method so that it does not require
the knowledge of the Lipschitz constant and is able to choose it adaptively in iterations. We
prove that the proposed method retains the same convergence rate as the original method
of Allen-Zhu and Orecchia [2014].

1 Notation

In what follows E denotes a finite-dimensional real vector space. The dual space which is
formed by all linear functions on E is denoted by E∗. The value of a function g ∈ E∗ at
x ∈ E is denoted by 〈g, x〉. The space E is endowed with a norm ‖·‖ (which can be arbitrary).
The corresponding dual norm is ‖g‖∗ := maxx∈E{〈g, x〉 : ‖x‖ ≤ 1}, g ∈ E∗. The gradient of
a differentiable function f at a point x is denoted by ∇f(x). For a convex function Ψ and a
point x, the symbol ∂Ψ(x) denotes the subdifferential of Ψ at x and Ψ′(x) ∈ ∂Ψ(x) stands
for any subgradient.

2 Main concepts

We consider the following convex composite optimization problem Nesterov [2013]:

min
x∈Q

[φ(x) := f(x) + Ψ(x)].

Here Q ⊆ E is a closed convex set, the function f is differentiable and convex on Q, and
function Ψ is closed and convex on Q (not necessarily differentiable).

In what follows we assume that f is Lf -smooth on Q:

‖∇f(x)−∇f(y)‖∗ ≤ Lf ‖x− y‖ , ∀x, y ∈ Q. (1)

We stress that the constant Lf > 0 arises only in theoretical analysis and not in the actual
implementation of the proposed method.

For mirror descent, we need to introduce the Bregman divergence. Let ω : Q → R be a
distance generating function, i.e. a 1-strongly convex function on Q in the ‖·‖-norm:

ω(y) ≥ ω(x) + 〈ω′(w), y − x〉+
1

2
‖y − x‖2 , ∀x, y ∈ Q.

Then the corresponding Bregman divergence is defined as

Vx(y) := ω(y)− ω(x)− 〈ω′(x), y − x〉, x, y ∈ Q.
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Finally, we generalize the Grad and Mirr operators from Allen-Zhu and Orecchia [2014]
to composite functions:

GradL(x) := argmin
y∈Q

{
〈∇f(x), y − x〉+

L

2
‖y − x‖2 + Ψ(y)

}
, x ∈ Q,

Mirrαz (g) := argmin
y∈Q

{
〈g, y − z〉+

1

α
Vz(y) + Ψ(y)

}
, g ∈ E∗, z ∈ Q.

3 The method

Below is the proposed scheme of the new method. The main differences between this algorithm
and the algorithm of Allen-Zhu and Orecchia [2014] are as follows: 1) now the Grad and Mirr
operators contain the Ψ(y) term inside; 2) now the algorithm does not require the actual
Lipschitz constant Lf , instead it requires an arbitrary number L0

1 and automatically adapts
the Lipschitz constant in iterations; 3) now we need to use a different formula for αk+1 to
guarantee convergence (see next section).

Algorithm 1 Accelerated gradient method.

Require: x0 ∈ Q: initial point; T : number of iterations; L0: initial estimate of Lf .
y0 ← x0, z0 ← x0, α0 ← 0
for k = 0, . . . , T − 1 do

Lk+1 ← max{L0, Lk/2}
while True do

αk+1 ←
√
α2
k
Lk

Lk+1
+ 1

4L2
k+1

+ 1
2Lk+1

, and τk ← 1
αk+1Lk+1

.

xk+1 ← τkzk + (1− τk)yk
yk+1 ← GradLk+1

(xk+1)

if f(yk+1) ≤ f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+ Lk+1

2 ‖yk+1 − xk+1‖2 then break
Lk+1 ← 2Lk+1

end while
zk+1 ← Mirrαk+1

zk
(∇f(xk+1))

end forreturn yT

Note that Algorihtm 1 if well-defined in the sense that it is always guaranteed that τk ∈
[0, 1] and so xk+1 ∈ Q as a convex combination of points from Q. Indeed, from the formula
for αk+1 we have

αk+1Lk+1 ≥

(√
1

4L2
k+1

+
1

2Lk+1

)
Lk+1 = 1,

therefore τk = 1
αk+1Lk+1

≤ 1.

4 Convergence rate

First we prove the analogues of Lemma 4.2 and Lemma 4.3 from Allen-Zhu and Orecchia
[2014].

Lemma 1. For any u ∈ Q and τk = 1
αk+1Lk+1

we have

αk+1〈∇f(xk+1), zk − u〉 ≤ α2
k+1Lk+1(φ(xk+1)− φ(yk+1)) + (Vzk (u)− Vzk+1(u))

+ αk+1Ψ(u)− (α2
k+1Lk+1)Ψ(xk+1) + (α2

k+1Lk+1 − αk+1)Ψ(yk).

Proof. From the first order optimality condition for zk+1 = Mirr
αk+1
zk (∇f(xk+1)) we get〈

∇f(xk+1) +
1

αk
V ′zk (zk+1) + Ψ′(zk+1), zk+1 − u

〉
≤ 0, ∀u ∈ Q.

1The number L0 can be always set to 1 with virtually no harm to the convergence rate of the method.
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Therefore

αk+1〈∇f(xk+1), zk − u〉
= αk+1〈∇f(xk+1), zk − zk+1〉+ αk+1〈∇f(xk+1), zk+1 − u〉
≤ αk+1〈∇f(xk+1), zk − zk+1〉+ 〈V ′zk (zk+1), u− zk+1〉+ αk+1〈Ψ′(zk+1), u− zk+1〉
≤ (αk+1〈∇f(xk+1), zk − zk+1〉 − αk+1Ψ(zk+1)) + 〈V ′zk (zk+1), u− zk+1〉+ αk+1Ψ(u),

where the inequality follows from the convexity of Ψ.
Using the triangle equality of the Bregman divergence, 〈V ′x(y), u − y〉 = Vx(u) − Vy(u) −

Vx(y), we get

〈V ′zk (zk+1), u− zk+1〉 = Vzk (u)− Vzk+1(u)− Vzk (zk+1)

≤ Vzk (u)− Vzk+1(u)− 1

2
‖zk+1 − zk‖2 ,

where we have used Vzk (zk+1) ≥ 1
2
‖zk+1 − zk‖2 in the last inequality.

So we have

αk+1〈∇f(xk+1), zk − u〉 ≤
(
αk+1〈∇f(xk+1), zk − zk+1〉 −

1

2
‖zk+1 − zk‖2 − αk+1Ψ(zk+1)

)
+ (Vzk (u)− Vzk+1(u)) + αk+1Ψ(u)

Define v := τkzk+1 + (1 − τk)yk ∈ Q. Then we have xk+1 − v = τk(zk − zk+1) and
τkΨ(zk+1) + (1− τk)Ψ(yk) ≥ Ψ(v) due to convexity of Ψ. Using this and the formula for τk,
we get(
αk+1〈∇f(xk+1), zk − zk+1〉 −

1

2
‖zk+1 − zk‖2 −Ψ(zk+1)

)
≤ −

(
αk+1

τk
〈∇f(xk+1), v − xk+1〉+

1

2τ2k
‖v − xk+1‖2 +

αk+1

τk
Ψ(v)

)
+
αk+1(1− τk)

τk
Ψ(yk)

≤ −(α2
k+1Lk+1)

(
〈∇f(xk+1), v − xk+1〉+

Lk+1

2
‖v − xk+1‖2 + Ψ(v)

)
+ (α2

k+1Lk+1 − αk+1)Ψ(yk)

≤ −(α2
k+1Lk+1)

(
〈∇f(xk+1), yk+1 − xk+1〉+

Lk+1

2
‖yk+1 − xk+1‖2 + Ψ(yk+1)

)
+ (α2

k+1Lk+1 − αk+1)Ψ(yk)

Here the last inequality follows from the definition of yk+1.
Note that by the termination condition for choosing Lk+1 we have

φ(yk+1) = f(yk+1) + Ψ(yk+1)

≤ f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+
Lk+1

2
‖yk+1 − xk+1‖2 + Ψ(yk+1)

= φ(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+
Lk+1

2
‖yk+1 − xk+1‖2 + Ψ(yk+1)−Ψ(xk+1).

After rearranging:

−
(
〈∇f(xk+1), yk+1 − xk+1〉+

Lk+1

2
‖yk+1 − xk+1‖2 + Ψ(yk+1)

)
≤ φ(xk+1)−φ(yk+1)−Ψ(xk+1).

Hence,(
αk+1〈∇f(xk+1), zk − zk+1〉 −

1

2
‖zk+1 − zk‖2 −Ψ(zk+1)

)
≤ (α2

k+1Lk+1)(φ(xk+1)− φ(yk+1))− (α2
k+1Lk+1)Ψ(xk+1) + (α2

k+1Lk+1 − αk+1)Ψ(yk).

Finally, combining the previous estimates, we get

αk+1〈∇f(xk+1), zk − u〉 ≤ (α2
k+1Lk+1)(φ(xk+1)− φ(yk+1)) + (Vzk (u)− Vzk+1(u))

− (α2
k+1Lk+1)Ψ(xk+1) + (α2

k+1Lk+1 − αk+1)Ψ(yk) + αk+1Ψ(u).
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Lemma 2. For any u ∈ Q and τk = 1
αk+1Lk+1

we have

(α2
k+1Lk+1)φ(yk+1)− (α2

k+1Lk+1 − αk+1)φ(yk) + (Vzk+1(u)− Vzk (u)) ≤ αk+1φ(u). (2)

Proof. Using convexity of f and relation τk(xk+1 − zk) = (1− τk)(yk − xk+1), we obtain

αk+1(φ(xk+1)− φ(u))

= αk+1(Ψ(xk+1)−Ψ(u)) + αk+1(f(xk+1)− f(u))

≤ αk+1(Ψ(xk+1)−Ψ(u)) + αk+1〈∇f(xk+1), xk+1 − u〉
= αk+1(Ψ(xk+1)−Ψ(u)) + αk+1〈∇f(xk+1), xk+1 − zk〉+ αk+1〈∇f(xk+1), zk − u〉

≤ αk+1(Ψ(xk+1)−Ψ(u)) +
αk+1(1− τk)

τk
〈∇f(xk+1), yk − xk+1〉+ αk+1〈∇f(xk+1), zk − u〉

≤ αk+1(Ψ(xk+1)−Ψ(u)) + (α2
k+1Lk+1 − αk+1)(f(yk)− f(xk+1)) + αk+1〈∇f(xk+1), zk − u〉

≤ αk+1φ(xk+1)− αk+1Ψ(u) + (α2
k+1Lk+1 − αk+1)f(yk)− (α2

k+1Lk+1)f(xk+1) + αk+1〈∇f(xk+1), zk − u〉.
Now we apply Lemma 1 to bound the last term, group the terms and get

αk+1(φ(xk+1)− φ(u)) ≤ αk+1φ(xk+1)− (α2
k+1Lk+1)φ(yk+1) + (α2

k+1Lk+1 − αk+1)φ(yk)

+ (Vzk (u)− Vzk+1(u)).

After rearranging, we obtain (2).

Now we need to use Lemma 2 for obtaining the convergence rate. Note that the special
choice of {αk}k≥0 in Algorithm 1 gives us

α2
k+1Lk+1 − αk+1 = α2

kLk, k ≥ 0. (3)

Therefore, taking the sum over k = 0, . . . , T − 1 in (2) and using that α0 = 0, VzT (u) ≥ 0 we
get

(α2
TLT )φ(yT ) ≤

(
T∑
k=1

αk

)
φ(u) + Vz0(u).

From (3) it follows that
∑T
k=1 αk = α2

TLT , so

φ(yT ) ≤ φ(u) +
1

α2
TLT

Vz0(u). (4)

Now it remains to estimate the rate of growth of coefficients Ak := α2
kLk. For this we use the

technique from Nesterov [2013]. Note that from (3) we have

Ak+1 −Ak =

√
Ak+1

Lk+1

Rearranging and using (a+ b)2 ≤ 2a2 + 2b2 and Ak ≤ Ak+1, we get

Ak+1 = Lk+1(Ak+1 −Ak)2 = Lk+1

(√
Ak+1 +

√
Ak
)2 (√

Ak+1 −
√
Ak
)2

≤ 4Lk+1Ak+1

(√
Ak+1 −

√
Ak
)2

From this it follows that √
Ak+1 ≥

1

2

k∑
i=0

1√
Li
.

Note that according to (1) and the stopping criterion for choosing Lk+1 in Algorithm (1), we
always have Li ≤ 2Lf . Hence,√

Ak+1 ≥
k + 1

2
√

2Lf
⇐⇒ Ak+1 ≥

(k + 1)2

8Lf
. (5)

Thus, combining (5) and (4) with u = x∗ = argminx∈Q φ(x) and Vz0(x∗) =: R
2

2
, we have

proved the following theorem:
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Theorem 1. For the sequence {yk}k≥0 in Algorithm 1 we have the following rate of conver-
gence:

φ(yT )− φ(x∗) ≤ 16LfR
2

T 2
.

Using absolutely identical arguments to Nesterov [2013], it is also possible to prove that
the average number of evaluations of the function f per iteration in Algorithm 1 equals 4.

Theorem 2. Let Nk be the total number of evaluations of the function f in Algorithm 1 after
the first k iterations. Then for any k ≥ 0 we have

Nk ≤ 4(k + 1) + 2 log2

Lf
L0
.
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