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Key Results

Structured Bayesian Pruning is a new model that provides structured
sparsity, e.g. removes neurons and convolutional filters.

Our contributions can be summarized as follows:
m a method of regularization of DNNs that results in structured sparsity
m a proper analog of sparsity-inducing log-uniform prior
m experiments that show that SBP regularizes well and leads to a high level
of group sparsity (it removes up to 80% of all units on a VGG-like
architecture) and acceleration (up to 4.5X measured speed-up) with small
accuracy drop

The method is implemented as a separate dropout-like layer and an additional
regularization term. TensorFlow implementation of our method is available.

Stochastic Variational Inference
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Approximate posterior distribution over 6 by Stochastic Variational Inference:
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Data-term Regularizer

m [ he true posterior distribution over 6 is approximated by ¢
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m Just a slightly different loss function; implementation is basically the same

Structured Bayesian Pruning with Improper Log-Uniform Prior

m [ he model injects multiplicative noise 6
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m [he approximated posterior is log-normal:
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+ The variational family has no “prior gap”

+ Log-normal noise does not change the sign of x

+ The KL-divergence term can be computed analytically
orior we obtain an ill-posed optimization problem
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Structured Bayesian Pruning with Proper Log-Uniform Prior

In order to obtain a proper probabilistic model,
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we truncate the prior and the posterior: - Zég;
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All necessary statistics can be computed in closed form:
m KL-divergence for training

0 for inference during testing

0 /+/IDO for pruning redundant neurons

m Expectation
m Signal-to-noise ratio SNR(0) =

Final Algorithm

Our final loss function is negative variational lower bound
L =— <1:q(@\,u,a) log p (Y | X, 0, W) T Q- KL(Q(@ | M U) H p(@))

— min
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where W denotes all weights of DNN, ¢ and p are truncated distributions.

Training procedure details:

m All models were pretrained with L2 regularization on parameters W

m Re-weight the KL term by «, proportional to the computational
complexity of each specific layer (SPBa procedure).

m Remove neurons with low SN R(6) after training; no fine-tuning needed!

m Tricks for numerically stable calculations are presented in the appendix

Experiments: LeNets on MNIST

m In MNIST experiments we compare different structured sparsity-inducing
techniques on LeNet-5-Caffe and LeNet-500-300 architectures.

m Our method provides the highest speed-up with the same accuracy.

Network Method Error %  Neurons per Layer CPU GPU FLOPs

Original 1.54 784 — 500 — 300 — 10 1.00x 1.00x 1.00x

LeNet SparseVD[1] 157 537 —217—130—10 1.19x 1.03x 3.73X

500-300 SSL|2] 1.49 434 —174— 78 —10 2.21x 1.04x 6.06x
StructuredBP 155 245 —160— 55—10 2.33x 1.08x 11.23x%

Original 0.80 20 — 50 — 800 — 500  1.00x 1.00x  1.00x

LoNet 5 SparseVDJ[1] 0.75 17—32—-329— 75 1.48x 1.41x 2.19x

SSL[2] 1.00 3—12—800—500 5.17x 1.80x 3.90x

StructuredBP 0.86 3—18 =284 — 283 5.41x 1.91x 10.49x%

Table: SSL is based on group lasso regularization, SparseVD induces weight-wise sparsity and
can coincidentally remove all weights in filers or neurons, StructuredBP is our model. We report
acceleration that was measured on CPU (Intel Xeon E5-2630), GPU (Tesla K40) and in terms
of Floating Point Operations (FLOPs).

Experiments: VGG-like on CIFAR-10

m CIFAR-10 experiments were done on a VGG-like architecture|3]. The
network consists of 12 convolutional and 2 fully connected layers with
Batch Normalization and Binary Dropout

m With small accuracy drop our models provide significant acceleration and
high structured sparsity. Presented speed-up was measured on CPU.
B StructuredBPa error 7.8, speed-up 4.5X
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Figure: Original is a dense network, StructuredBP is our model, StructuredBPa is our model
with re-weighted KL divergence for the first 6 layers.
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Experiments: Random Labels

dog ship frog

Dataset  Architecture Train Acc. Test Acc. Sparsity
7 MNIST FC + BD 100% 10% —
MNIST FC + StructuredBP 10% 10% 100%
r CIFAR-10 VGG + BD 100% 10% —
CIFAR-10 VGG + StructuredBP 10% 10% 100%
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Unlike Binary Dropout (BD), Structured BP does not

overfit on randomly labeled data and yields an empty

network. |t is an optimal architecture for this task!

Discussion

m Bayesian Learning framework is well known for providing non-structured
sparse solutions. Usually sparsity is caused by Empirical Bayes which
adjusts the prior distribution to the data. It can potentially lead to
additional overfitting.

m In this work we utilize the Bayesian framework to obtain structured
sparsity. We did not adjust the prior distribution, so the risk of overfitting
is decreased.

Links and References

[m] e [m]
[=]

Page: goo.gl/a5CpXk

[1] Molchanov, D., Ashukha, A. and Vetrov, D. Variational
Dropout Sparsifies Deep Neural Networks, ICML 2016
2] Wen, W., Wu, C., Wang, Y., Chen, Y. and Li, H.

Learning structured sparsity in deep neural networks,
NIPS 2016

[3] Sergey Zagoruyko. 92.45 on cifar-10 in torch, 2015.



goo.gl/a5CpXk

