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Key Results

Structured Bayesian Pruning is a new model that provides structured
sparsity, e.g. removes neurons and convolutional filters.

Our contributions can be summarized as follows:

a method of regularization of DNNs that results in structured sparsity

a proper analog of sparsity-inducing log-uniform prior

experiments that show that SBP regularizes well and leads to a high level
of group sparsity (it removes up to 80% of all units on a VGG-like
architecture) and acceleration (up to 4.5× measured speed-up) with small
accuracy drop

The method is implemented as a separate dropout-like layer and an additional
regularization term. TensorFlow implementation of our method is available.
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Approximation of posterior distribution of θ is

θ ∼ q(θ |ϕ)
We put a sparsity-inducing prior over θi
Parameters ϕ are trained using Stochastic VI

Approximate posterior distribution over θ by Stochastic Variational Inference:

L = E
q(W̃
− Eq(θ |ϕ) log p (Y |X, θ)︸ ︷︷ ︸

Data-term

+E
q(W̃

DKL(q(θ |ϕ) ‖ pprior(θ))︸ ︷︷ ︸
Regularizer

→ min
ϕ

The true posterior distribution over θ is approximated by q

DKL(q(θ |ϕ) ‖ p(θ |X, Y ))→ min
ϕ

Just a slightly different loss function; implementation is basically the same

Structured Bayesian Pruning with Improper Log-Uniform Prior

The model injects multiplicative noise θ
into the output x of the previous layer

yi = xi · θi θi ∼ pnoise(θi)

Log-uniform prior for sparsity:

p(θi) = LogU∞(θi) ∝
1

θi
θi > 0

The approximated posterior is log-normal:

log θi ∼ N (log θi |ϕi), ϕi = {µi, σ2i}
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+ The variational family has no “prior gap”

+ Log-normal noise does not change the sign of x

+ The KL-divergence term can be computed analytically

− Due to the improper prior we obtain an ill-posed optimization problem

KL
(
LogN(θ |µ, σ2) ‖LogU∞(θ)

)
= C − log σ, C = +∞

Structured Bayesian Pruning with Proper Log-Uniform Prior

In order to obtain a proper probabilistic model,
we truncate the prior and the posterior:

p(θi) = LogU∞(θi)⇒ LogU[a,b](θi)

q(θi) = LogN(θi |ϕi)⇒ LogN[a,b](θi|ϕi)

LogP[a,b](θi) ∝ LogP∞(θi) · I[a,b](log θi)
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All necessary statistics can be computed in closed form:

KL-divergence for training

Expectation Eθ for inference during testing

Signal-to-noise ratio SNR(θ) = Eθ/
√
Dθ for pruning redundant neurons

Final Algorithm

Our final loss function is negative variational lower bound

L = −Eq(θ |µ,σ) log p (Y |X, θ,W ) + α · KL(q(θ |µ, σ) ‖ p(θ))→ min
µ,σ,W

where W denotes all weights of DNN, q and p are truncated distributions.

Training procedure details:

All models were pretrained with L2 regularization on parameters W

Re-weight the KL term by α, proportional to the computational
complexity of each specific layer (SPBa procedure).

Remove neurons with low SNR(θ) after training; no fine-tuning needed!

Tricks for numerically stable calculations are presented in the appendix

Experiments: LeNets on MNIST

In MNIST experiments we compare different structured sparsity-inducing
techniques on LeNet-5-Caffe and LeNet-500-300 architectures.

Our method provides the highest speed-up with the same accuracy.

Network Method Error % Neurons per Layer CPU GPU FLOPs

LeNet
500-300

Original 1.54 784− 500− 300− 10 1.00× 1.00× 1.00×
SparseVD[1] 1.57 537− 217− 130− 10 1.19× 1.03× 3.73×
SSL[2] 1.49 434− 174− 78− 10 2.21× 1.04× 6.06×
StructuredBP 1.55 245− 160− 55− 10 2.33× 1.08× 11.23×

LeNet-5

Original 0.80 20− 50− 800− 500 1.00× 1.00× 1.00×
SparseVD[1] 0.75 17− 32− 329− 75 1.48× 1.41× 2.19×
SSL[2] 1.00 3− 12− 800− 500 5.17× 1.80× 3.90×
StructuredBP 0.86 3− 18− 284− 283 5.41× 1.91× 10.49×

Table: SSL is based on group lasso regularization, SparseVD induces weight-wise sparsity and
can coincidentally remove all weights in filers or neurons, StructuredBP is our model. We report
acceleration that was measured on CPU (Intel Xeon E5-2630), GPU (Tesla K40) and in terms
of Floating Point Operations (FLOPs).

Experiments: VGG-like on CIFAR-10

CIFAR-10 experiments were done on a VGG-like architecture[3]. The
network consists of 12 convolutional and 2 fully connected layers with
Batch Normalization and Binary Dropout

With small accuracy drop our models provide significant acceleration and
high structured sparsity. Presented speed-up was measured on CPU.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Layer

0

100

200

300

400

500

600

700

800

N
um

be
r o

f f
ilt

er
s 

/ n
eu

ro
ns

Original               error 6.8, speed-up 1.0×
StructuredBP      error 7.2, speed-up 3.6×
StructuredBPa    error 7.8, speed-up 4.5×

Figure: Original is a dense network, StructuredBP is our model, StructuredBPa is our model
with re-weighted KL divergence for the first 6 layers.

Experiments: Random Labels

dog ship frog

automobile airplane horse

Dataset Architecture Train Acc. Test Acc. Sparsity
MNIST FC + BD 100% 10% —
MNIST FC + StructuredBP 10% 10% 100%
CIFAR-10 VGG + BD 100% 10% —
CIFAR-10 VGG + StructuredBP 10% 10% 100%

Unlike Binary Dropout (BD), Structured BP does not

overfit on randomly labeled data and yields an empty

network. It is an optimal architecture for this task!

Discussion

Bayesian Learning framework is well known for providing non-structured
sparse solutions. Usually sparsity is caused by Empirical Bayes which
adjusts the prior distribution to the data. It can potentially lead to
additional overfitting.

In this work we utilize the Bayesian framework to obtain structured
sparsity. We did not adjust the prior distribution, so the risk of overfitting
is decreased.
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