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PLAN

Continual learning & catastrophic forgetting
Alleviating forgetting

Replay

Regularization

Expansion

Learning continually with invertible models [if we have enough time]



CONTINUAL LEARNING (CL)

* A model is presented with a sequence of tasks Tt1 , th, Y
with task IDs #; € {1,...,M}

* When training on task 1; = {(x’],y’])}]]v’zl we don't have access to
previous data |

T

* The assumption is that the tasks will be revisited in the future

* Catastrophic forgetting: model's performance on previous task
degrades when training on new one
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GOALS

Mitigate forgetting
Transfer knowledge to new and old tasks

Fixed or limited memory and computation (scalability)



CONTINUAL LEARNING: CATASTROPHIC FORGETTING

* Tug-of-war dynamics while learning on non iid distribution

* Problem of "locality" of learning and optimization

=

" Stability-plasticity tradeoff




CONTINUAL LEARNING NEURAL NETWORK

task 1 head

task 2 head




CONTINUAL LEARNING SCENARIOS

~ Split MNIST task: T1 is classes 0 and 1, T2 is classes 2 and 3, ..

Incremental Task Learning

Incremental Domain Learning Incremental Class Learning

Prob

Class

Prob

Class

Legend: Shared layers Active head (classifier) Inactive head

Hsu et al, Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines



CONTINUAL LEARNING BENCHMARKS

~ "Split" datasets: MNIST, CIFAR, ImageNet, CUB [Wah et al 2011]
* Permuted or rotated MNIST, SVHN-MNIST
* Taskonomy [Zamir et al 2018]



METRICS

Let a; ; be the accuracy of the model on task i after training on task |

: : 1 vd
" Final test accuracy a; ; on each task i or average across tasks )i 1Giz

" Average forgetting % Z,’T:_11 (ai;j —air) (orbackward transfer!)

1

T —1

T—1
Z(ai,i—l —1;) [Lopez-Paz & Ranzato 2017]

1=2

> Forward transfer



ALLEVIATING CATASTROPHIC FORGETTING

"~ Replay based
 Regularization based (parameter and function space)
* Expansion based (adding capacity)

+ their combination

" Baselines:
* Upper bound: Multi-Task Learning (T1, T1+T2, ...) or iid training

* Lower bound: SGD (more common than adaptive optimizers in
non iid tasks)
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REPLAY

~ Write task data to fixed size memory and use it later to prevent
forgetting

" Need to choose: update rule using replay samples, sampling strategy
to fill the replay buffer
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REPLAY

* Reservoir sampling / choosing samples uniformly at random

Algorithm 1 Experience Replay for Continual Learn-

ing.

1: procedure ER(D, mem_sz, batch_sz, Ir)

2 M + {} * mem sz > Allocate memory buffer of size mem sz

3: n<+ 0 [> Number of training examples seen in the continuum

4 forte {1,---,T} do

5 for B, X D; do > sample without replacement a mini-batch of
size K from task ¢

6: B XM > Sample a mini-batch from M

7: 0 < SGD(B,, U B, 0,1r) 1 single gradient step
to update the parameters by stacking current minibatch with minibatch from memory

8: M + UpdateMemory(mem_ sz, t,n, B,)
[> Memory update, see §4

0: n < n + batch_sz [> Counter update

10: return 6, M




REPLAY

* Gradient Episodic Memory (GEM): we want the loss on memory
samples to not increase

minimizeg £(fo(z,t),y)
subjectto  £(fo, M) < L(fi~', My) forall k < t

" Project gradients:

<g7 gk> = <8£(f0(8w9, t)’ y)7 8£(fg,9Mk)> Z 07 fOI' all k? < .

... 1 12
minimize; 5 |lg - 3

subjectto (g, gx) > Oforall k <t
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REPLAY

* Averaged GEM: more memory efficient

. 1 . .
minimize; §||g—g||§ St G Greg >0

" Project gradients:
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INCREMENTAL LEARNING

* Incremental Classifier and Representation Learning (iCaRL): class-
incremental learning setting

" Features extractor network ¢ : X — R
" For representation learning ¢g,(z) = 1/(1 + exp(—w§¢(a:)))

* Exemplar set for each class Pt , classification is done via nearest mean
of exemplar (class prototype)

outputs before updating

L/

UO)==3" | D 8y=y: 108 9y (w:)+ Syu; log(1—gy (z:)) +D_a? log g, (@:)+(1—q¥) log(1—g, (x:))]

(z;,y;,)€ED y=s y=1

classification loss distillation loss
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GENERATIVE REPLAY

* Continual Unsupervised Representation Learning [Rao et al 2019]

task 1data — . ‘
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GENERATIVE REPLAY

* Continual Unsupervised Representation Learning

task 1 data —» .pS‘
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GENERATIVE REPLAY

* Continual Unsupervised Representation Learning

generated task 1 samples
PS
task 2 data —»> . '



GENERATIVE REPLAY

19

"~ Generative Adversarial Networks can be used to approximate
evolving data distribution

~ "Scholar" is a generator + task solver

Lirain(0i) = TE(z,y)~0, [L(S(2;0:), y)| + (1 — 1) Earng,, [L(S(2; 0:), S (25 0i-1))]

Scholary
v

Scholar,
v

Scholar;

v
Scholary

(a) Sequential Training

Current Task

Current Task

I New Scholar ' New Scholar

Current ' x Generator

Replay | x'

Generator

Old Scholar
(b) Training Generator

Current| X Generator

§ Generator|
Replay || x') ’I I

Old Scholar
(¢) Training Solver




20

GENERATIVE REPLAY

"~ Generative Adversarial Networks can be used to approximate
evolving data distribution

~ "Scholar" is a generator + task solver
Lirain(0:) = rE(@,y)~p, [L(S(2;0:), y)] + (1 — 1) Eorn,, [L(S (2" 0:), S(2'; 05-1))]
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REGULARIZATION IN PARAMETER SPACE

" L2 regularization Z al|6 — (9;6”2
1=1

" Estimate the importance of each parameter for previous tasks and
penalize changes to each parameter proportional to this measure

3 Low error for task B == EWC
== Low error for task A = L2

== NO penalty
\
-
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REGULARIZATION IN PARAMETER SPACE

" Elastic Weight Consolidation (EWC)

L(0 +Z CFi(0; — 0% ;)

where F; is a diagonal of the Fisher mformatlon matrix F

train A train B train C
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REGULARIZATION IN PARAMETER SPACE

- EWC Bayesian interpretation:

log p(8|D) = log p(Dp|0) + log p(0|Da) — log p(Dp)

"~ Approximate posterior as a Gaussian distribution with mean 6’:'21 and
diagonal precision F
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FUNCTIONAL REGULARIZATION FOR CONTINUAL LEARNING WITH GPS

TASK 1 | TASK 2
L1(x,y]0) I Lo(x,y]0) — KL(g(u)||p(u))
| ' I
g oL@ s : 2 |l o)
[ N G s
é_) : == -; 4 b L I o+ & I g :
L () l A N —
A sv? B. o4 | A S

"~ Replace the last layer of a neural network with a GP
fi(z) ~ GP(0,k(x, ")), k(z,2') = og,¢(x;0) " ¢(a;6),

* Use inducing points to avoid forgetting with the GP



EXPANSION

"~ Progressive Neural Networks

h§k)—f(
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CONTINUAL LEARNING SCENARIOS

Incremental Task Learning

Incremental Domain Learning

Incremental Class Learning

Prob

Class

Prob

Class

Legend:

Shared layers

Active head (classifier) Inactive head

Hsu et al, Re-evaluating Continual Learning Scenarios: A Categorization and Case for Strong Baselines
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CONTINUAL LEARNING SCENARIOS

" Typically the inputis (x;,;,t;) butthe model may not have access to
task ID and only receive (x4, Yi)

"~ Task agnostic domain incremental learning or unsupervised learning

" Task free: continuously drifting distribution (e.g. CIFAR-C with
increasing noise intensity or mixed tasks)
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BEYOND CATASTROPHIC FORGETTING

* Forward and backward transfer

* Sample efficiency: the minimum possible number of examples to
replay for remembering

* Understanding continual learning and forgetting [Ramasesh et al
2020, Mirzadeh et al 2020]
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Questions?
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