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Classification: cows vs. camels




A camel?!




Sandy background
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Grassy background
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Correlation-versus-causation dilemma

Minimizing training error leads machines into recklessly absorbing all the
correlations found in training data.

However, spurious correlations stemming from data biases are unrelated
to the causal explanation of interest.

Problem: identify which properties of the training data describe spurious
correlations (landscapes and contexts), and which properties represent
the phenomenon of interest (animal shapes).



Causation = invariance

Spurious correlations do not appear to be stable properties.

Yet, there exists an intimate link between invariance and causation useful
for generalization.

(That's why shuffling is actually not that OK: we destroy information about
how the data distribution changes = no way to know which properties are
stable.)



Strategy

Assume that the training data is collected into distinct, separate
environments.

We promote learning correlations that are stable across training
environments, as these should also hold in novel testing environments.
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Different cows data environments
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Invariant Risk Minimization (IRM) principle

To learn invariances across environments, find a data
representation such that the optimal classifier on top of that
representation matches for all environments.



Basic formulation of the problem

Consider datasets D, := {(25.y$)}ey e € E Ean D Eir
Our goal is to learn a predictor Y ~ f(.X)
We wish to minimize R°°P(f) = max R°(f)

e€&an
where RC(f) := Exe ye|[l(f(X°),Y )] is the risk under environment €.



Example
X1 + Gaussian(0, 02),

Let Y « Xi+ Gaussian(0,0?),
X9 <Y + Gaussian(0, 1).

and & = {replace o2 by 10, replace o by 20}

A

Consider Y = X{a1 4+ X5ae = we can:
e regress from X7, to obtain &1 = 1 and &g = 0,
1

e regress from X§, to obtain &y = 0 and ag = o(e)/(o(e) + 3),

e regress from (X§, X§), to obtain &y = 1/(0(e)+ 1) and &y = a(e)/(o(e) + 1).



Analysis

The regression using X1 is our first example of an invariant correlation:

this is the only regression whose coefficients do not depend on the
environment.

Conversely, the second and third regressions exhibit coefficients that vary
from environment to environment.

The invariantrule Y = 1 - X1+ 0- X5 is the only predictor with finite
ROCP and this actually is the causal explanation.



The many faces of generalization (prior work)

1.

Empirical Risk Minimization (ERM)

Robust learning: minimize R™"(f) = max.c¢e, R°(f) — 7o
Turns out to be equivalent to weighted ERM.

Domain adaptation: estimate a data representation that follows the
same distribution for all environments.

Sometimes attempts to enforce the wrong type of invariance.
Invariant causal prediction (ICP): search for the subset of variables

which produce equally distributed regression residuals.



IRM formulation

Definition 3. We say that a data representation ® : X — H elicits an invariant

predictor wo® across environments & if there is a classifier w : H — )Y simultaneously
/ ar 7 21971 1 2 ng aro 1 € (o - o)

optimal for all environments, that is, w € argming.4 . R°(w o @) for all e € £.

This concept of invariance clarifies common induction methods in science!

min Z R¢(w o ®)

:X—H
w:H—=Y e€&r (IRl\I)
subject to w € argmin R°(w o @), for all e € &;.
w:H—=Y
' Re(d NV wjw=1.0 B¢ (w - ®)|?, IRMv1
JUin D RE@) + 2 [Vujpu=o B (w - @) (IRMv1)

ee&r




From (IRM) to (IRMv1)



1. Phrasing the constraints as a penalty

min Ré(wod
P:X—H Z ( )
w:H—Y eC&ir (IRI\[)
subject to w € argmin R°(w o @), for all e € &;.
w:H—Y

becomes

Lirm (P, w) Z Rf(wo®)+ \-D(w, D, e)

eCr



2. Choosing a penalty for linear classifiers

Consider linear-least squares regression case = then the optimum is:
l.l_’(% —_ EJX'G [(I)(AX’C)T(I)(AX(_%‘)} =k E‘X'G?Y'G [(I)(AXG)T}YC]

And hence we can consider two similar types of penalty:

Dgist(w, ,e) = [|w — wg |‘2

and

Dijn(w, @, €) = ||Exe [2(X¢)T@(X)] w — Exe ye [(X)TY?]|

‘
—



2. Choosing a penalty for linear classifiers

12

— Daist ((1,0), ®, €)
= = Dygist (heavy regularization)
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invariance penalty

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

¢, the weight of ® on the input with varying correlation

Figure 1: Different measures of invariance lead to different optimization landscapes in our
Ezxzample 1. The naive approach of measuring the distance between optimal classifiers Dajst
leads to a discontinuous penalty (solid blue unregularized, dashed orange regularized). In
contrast, the penalty Dyn does not exhibit these problems.



3. Fixing the linear classifier

The problem is over-parameterized: w o ® = (u.r o \If‘l) o(Wod).

N ¥,
- ~"

—~

w b

N

Let’s restrict our search! We will fix the non-zero classifier 10 and find a
data representation such that the optimal classifier, on top of that data
representation, is W for all environments:

Lipm,w=w(®) = Z Ré(w o ®) + X - Dy, (w0, D, e).
eEEtr



4. Scalar classifiers are sufficient to monitor invariance

It turns out that @ = (1,0, ...,0) is sufficient! So:

LirMw=1.0(2") = Y RY(®7) + A-Dyn(1.0,07 e).

eC&ir

Theorem 4. For all e € €, let R° : R? — R be convex differentiable cost functions.
A vector v € R? can be written v = ®Tw, where &7 € RP*4 and where w € RP
simultaneously minimize R¢(w o ®) for all e € &, if and only if v VR®(v) =0 for
all e € €. Furthermore, the matrices ® for which such a decomposition exists are the
matrices whose nullspace Ker(®) is orthogonal to v and contains all the V R¢(v).



Theorem 4 illustration

Solutions v :
intersections of ellipsoids

zero 1s a solution

Figure 2: The solutions of the invariant linear predictors v = ®Tw coincide with the
intersection of the ellipsoids representing the orthogonality condition v' VRE(v) = 0.



5. Extending to general losses and multivariate outputs
Recall Dy, (w, ,e) = ||Exe [(X€)T®(X¢)] w — Exe ye [$(X ]H
We can rewrite this linear penalty: (1.0, P, e) = |]V.u,|u.:1.(_~_,]?‘?(uv - P)||?

If the target space ) returned by ® has multiple outputs, we multiply

all of them by the fixed scalar classifier w = 1.0.

C’Eétl

o e U - 2 D] =
[ @11‘}1332 Z BE (@) + A « [|[Vgjw=i0 B (w-®)|, (IRMv1) }




Invariance, causality and generalization



Fundamental questions

IRM promotes low error and invariance across training environments.
When do these conditions imply invariance across all environments?

When do these conditions lead to low error across all environments?
(Basically, OOD generalization)

How does statistical invariance and out-of-distribution generalization
relate to concepts from the theory of causation?

Please see the article for details...



Experiments

https://qgithub.com/facebookresearch/InvariantRiskMinimization



https://github.com/facebookresearch/InvariantRiskMinimization

Synthetic data

@ Z°% «— N(0,¢e%)

/ | \ £ Z° Wioss + N(0,¢2)
Y ¢+ Z%- Wy X7~ Wiy + N(0, U’Z)
—) _) r 7 i
X5 + Z° - Whoya + Y- Wyssa + N(0,02)
Figure 3: In our synthetic experiments, the task is to predict Y¢ from X° = (X{,X§)-S
across multiple environments e € R.

e Scrambled (S) observations, where S is an orthogonal matrix, or
unscrambled (U) observations, where S = [.

o Fully-observed (F) graphs, where Wi,y = W,y = W40 =0, or
partially-observed (P) graphs, where (Wp 1, Wiy, Wj2) are Gaussian.

. . (3, 5] £ -
e Homoskedastic (O) Y-noise, where Ug =e“ and 05 =1, or
2

heteroskedastic (E) Y-noise, where oiy =1 and 02 = €2



Synthetic data

5 10-1 10° A 10° 10° 4
£ ] ]
¢ (a1 6:x 101
% 102 B P 4x1071]
@ 3x10-1 3x 10711
FOU FOS FEU
—_
2 1072 4 ' 1072 5 ' 3
< 6 x 107!
g 43 10711
8§ 10744 2 x 101 -
4 2 = -1 ]
g 10 10
£ 100 4 109 4
= a
8 10-14 6 %1071
E 107" 5 4101
3 3x 10!
5] 2 x 1071
POU POS
—
o -1 1 1
10
5 3 x 10-2 ]
g 6 x 107! 1
z -2 i
—2
g 10

Figure 4: Average errors on causal (plain bars) and non-causal (striped bars) weights for
our synthetic experiments. The y-azxes are in log-scale. See main text for details.



Colored MNIST

Binary label: y = 0 for (0-4) / 1 for (5-9), then flip with prob. 0.25
Color: (0) / red(1) by flipping y with prob. pe
2 training environments: {pe = 0.2, pe = 0.1} and 1 testing: {pe = 0.9}

Algorithm Acc. train envs. Acc. test env.
ERM 87.4+0.2 171 £0.6
IRM (ours) 70.8 +£0.9 66.9 +2.5
Random guessing (hypothetical) 50 50
Optimal invariant model (hypothetical) 75 75
ERM, grayscale model (oracle) 73.540.2 73.0+04

Table 1: Accuracy (%) of different algorithms on the Colored MNIST synthetic task. ERM
fails in the test environment because it relies on spurious color correlations to classify digits.
IRM detects that the color has a spurious correlation with the label and thus uses only the
digit to predict, obtaining better generalization to the new unseen test environment.



Colored MNIST
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Figure 5: P(y = 1|h) as a function of h for different models trained on Colored MNIST: (left)
an ERM-trained model, (center) an IRM-trained model, and (right) an ERM-trained model
which only sees grayscale images and therefore is perfectly invariant by construction. IRM
learns approximate invariance from data alone and generalizes well to the test environment.



An information theoretic view

https://www.inference.vc/invariant-risk-minimization/
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Information theoretic formulation of IRM

QO
#(X) such that:

e Y 1 E|¢(X), and

e ¢ isinformative about y, i.e. we can predict y accurately from ¢(x)



Smells like information bottleneck...

I
mgx{

max {/

Liam (P, w) = Z Ré(wo ®) + \-D(w, ®, e)
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From information to gradient penalties

IlY, E|¢(z)] = min E.R(fo 0 ¢) — Ee min R°(fo, © 9)

IV, El$(z)] > minE, { “(fa0 ¢) — min RE(forq o¢)}

0 |de || <e

I[Y, E|¢(x)] > minE. [ VoR*(fs o )|l

ngn{mémE (fgoqﬁ)—l—)\mmE |IVeRE(f 90¢)||2}

ngn H{oin {EcR(foo @) + AEc||VoR (fo 0 @)=}



Summing up

We would like to learn robust predictors that are based on causal
associations between variables, rather than spurious surface
correlations that might be present in our data.

Invariance and causation are quite related; we can leverage this
connection by promoting out-of-distribution generalization.
Assume that data are sampled from different environments.

IRM principle: find a representation of features, such that the optimal
predictor is simultaneously optimal in all environments.

. . > > ‘) =
SN 2 Ré(®) + A - ||Vyjw=1.0 B (w - D)| (IRMv1)




Thank you!



