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What is MDP?

Definition of Markov Decision Process
MDP is a tuple 〈S,A,P,R〉, where

1 S – set of states of the world
2 A – set of actions
3 P : S ×A 7→ 4(S) – state-transition

function, giving us p(st+1 | st , at)
4 R : S ×A 7→ R – reward function,

giving us ER [R(st , at) | st , at ].

Markov property

p(rt , st+1 | s0, a0, r0, ..., st , at) = p(rt , st+1 | st , at)

(next state, expected reward) depend on (previous state, action)
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MDP problems are closer than they seem

Pong Space invaders

What is a state here?
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MDP problems are closer than they seem

Pong Space invaders

What is a state here?

128 bytes of unobserved Atari simulator RAM

Shvechikov Pavel POMDP in RL



What is wrong with MDP? POMDP details Approximate Learning in POMDPs

Sources of uncertainty

Typically autonomous agent’s state is composed of
measurement of environment
measurment of agent itself

In real system there is even more uncertainty:
1 imperfect self-sensing (position, torque, velocity, etc.)
2 imperfect environment perception
3 incomplete observation of environment

How to incorporate uncertainty into decision making?
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POMDP is a powerful mathematical abstraction

Industrial applications
Machine maintenance (Shani et al., 2009)
Wireless networking (Pajarinen et al., 2013)
Wind farms managing (Memarzadeh et al., 2014)
Aircraft collision avoidance (Bai et al., 2012)
Choosing sellers in E-marketplaces (Irissappane et al., 2016)

Assistive care
Assistant for patients with dementia (Hoey et al., 2010)
Home assistants (Pineau et al., 2003)

Robotics
Grasping with a robotic arm (Hsiao et al., 2007)
Navigating an office (Spaan et al., 2005)

Spoken dialog systems
Uncertainty in voice recognition (Young et al., 2013)
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POMDP’s place in a model world

POMDP’s siblings
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POMDP model

Definition
Partially Observed Markov Decision Process
is a tuple 〈S,A,P,R,Ω,O〉

1 S,A,P,R are the same as in MDP
2 Ω – finite set of observations
3 O : S ×A 7→ 4(Ω) – observation

function, which gives ∀(s, a) ∈ S,A, a
probability distribution over Ω, i.e.
p(o | st+1, at) ∀o ∈ Ω
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POMDP model

Definition
Partially Observed Markov Decision Process
is a tuple 〈S,A,P,R,Ω,O〉

1 S,A,P,R are the same as in MDP
2 Ω – finite set of observations
3 O : S ×A 7→ 4(Ω) – observation

function, which gives ∀(s, a) ∈ S,A, a
probability distribution over Ω, i.e.
p(o | st+1, at) ∀o ∈ Ω

What if we ignore the partial observability?
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Reactive (adapted) policies
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Adapted policies (Singh et al., 1994)

Adapted policy

is a mapping π : Ω→4(A)

Stationary adapted π’s in POMDP:
1 deterministic π can be arbitrarily

bad compared to the best
stochastic π

2 stochastic π can be arbitrarily bad
compared to the optimal π in
underlying MDP
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Adapted policies (Singh et al., 1994)

Adapted policy

is a mapping π : Ω→4(A)

Stationary adapted π’s in POMDP:
1 deterministic π can be arbitrarily

bad compared to the best
stochastic π

2 stochastic π can be arbitrarily bad
compared to the optimal π in
underlying MDP

What maximum return is achievable for a nonstationary policy?

Shvechikov Pavel POMDP in RL



What is wrong with MDP? POMDP details Approximate Learning in POMDPs

Sufficient information process (Striebel, 1965)

Complete information state ICt at time t

ICt = 〈ρ(s0), o0, a0, ..., at−1, ot〉

where ρ(s0) is a distribution over initial states

A sequence {It} defines a sufficient information process when
1 It = τ(It−1, ot , at−1)

I can be updated incrementally
2 P(st |It) = P(st |ICt )

It does not lose information about states
3 P(ot |It−1, at−1) = P(ot |ICt−1, at−1)

It does not lose information about next observation
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Information tracking
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Belief states and their updates (Bayes filter)

Belief state – distribution over state space

bt(s)
∆
= P(st = s | ICt )

POMDP is MDP over properly updated beliefs (Astrom, 1965):

b′(s ′) = p(s ′ | o ′, a, b) =
p(s ′, o ′ | a, b)

p(o ′ | a, b)

=
p(o ′ | s ′, a) · p(s ′ | a, b)∑
s′′ p(o ′ | s ′′, a) · p(s ′′ | a, b)

∝ p(o ′ | s ′, a)
∑
s

p(s ′ | a, s) · b(s)
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From POMDP to MDP over beliefs

Bellman optimality equation for V ∗(st)

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

p(s ′ | s, a)V ∗(s ′)

]

Bellman optimality equation for V ∗(bt)

V ∗(b) = max
a

[
R(b, a) + γ

∑
s′

p(b′ | b, a)V ∗(b′)

]
p(b′ | a, b) =

∑
o′,s′,s

p(b′ | a, b, o ′)p(o ′ | s ′, a)p(s ′ | s, a)b(s)

p(b′ | a, b, o ′) = I(b′ = BayesFilter(o ′, a, b))

R(b, a) =
∑
s

b(s)R(s, a)
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Reasoning about state uncertainty

Bad news: belief updating can be computed exactly only for
1 discrete low-demensional state-spaces
2 linear-Gaussian dynamics (leading to Kalman filter), i.e.

s ′ ∼ N (s ′ |Tss + Taa, Σs)
o′ ∼ N (o′ |Oss

′ + Oaa,Σo)
R(s, a) = s>Rss + a>Raa

What if
1 states are of a complex nature? (i.e. images)
2 state transition function is non-linear and unknown?
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Possible options

1 Use advanced tracking techniques
Deep Variational Bayes Filter (Karl et al., 2016)

2 Just forget all the math and use LSTM / GRU
DRQN (Hausknecht et al., 2015), DARQN (Zhu et al., 2017),
RDPG (Heess et al., 2015)

3 Preserve information with predictive state representations
Recurrent Predictive State Policy (Hefny et al., 2018)

4 Use human-like differentiable memory
Neural Map (Parisotto et al., 2017), MERLIN (Wayne et al.,
2018)
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Deep Recurrent Q-Learning (DRQN)

Q-learning: Q(st , at) = Er ,s′|st ,at [ r + γmaxa′ Q(s ′, a′) ]

Problem: we don’t know st

DRQN solution: (Hausknecht et al., 2015)
1 equip agent with memory ht
2 approximate Q(st , at) with Q(ot , ht−1, at)

3 eliminate dependence on ot by modelling ht = LSTM(ot , ht−1)

Benefits:
1 simple approximate POMDP solver with one frame input
2 need only to model Q(ht , at)

3 minor changes to vanilla DQN architecture
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DRQN: architecture
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RNN-like memory

1 It – input image
2 vt – agent’s velocity
3 rt−1 – previous reward
4 Tt – text instructions

Drawbacks:
1 truncated BPTT
2 sparse reward signal
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DNC-like memory

Sensory data can instead be encoded and stored without trial and
error in a temporally local manner.
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MERLIN (Wayne et al., 2018): design principles

Neuroscience motivation
1 predictive sensory coding

brain continually generates models of the world
based on context and information from memory
to predict future sensory input

2 hippocampal representation theory (Gluck et al., 1993)
representations pass through a compressive bottleneck
then reconstruct input stimuli together with task reward

3 temporal context model

Under the hood:
1 Variational Autoencoders
2 Differentiable Neural Computer
3 Recurrent Asynchronous Advantage Actor Critic (A3C)
4 57 pages long paper of 24 authors from DeepMind
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MERLIN (Wayne et al., 2018): architecture
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Variational Autoencoder

Each component of

ot = (It , vt , at−1, rt−1,Tt) ∈ R10 000

is independently encoded into et ∈ R100 by

(6 ResNet blocks, MLP, None, None, 1-layer LSTM)

Decoding process uses same architectures.

Return predictor decoder
MLP: V π(zt , log πt(a|Mt−1, z≤t)) is regressed on Ĝt

MLP: A(zt , at) is regressed on Ĝt − V π(·, ·)

Shvechikov Pavel POMDP in RL



What is wrong with MDP? POMDP details Approximate Learning in POMDPs

Memory – simplified DNC model

Memory is a tensor Mt with dimensions (Nmem, 2|z |)
Each step we write vector [zt , (1− γ)

∑
t′>t γ

t′−tzt′ ] to Mt−1

denote mt = [m1
t , ...,m

K
t ] for readout of K read heads

Reading from memory
MBP LSTM: [zt , at ,mt−1] → h1

t

Policy LSTM: [zt ] → h2
t

Linear([h1
t , h

2
t ])→ it = [k1

t , ..., k
K
t , β

1
t , .., β

K
t ]

c ijt = cosine(k it , Mt−1[j , ·])
w i
t = Softmax(β1

t c
i1
t , ..., β

K
t c iNmem

t )

readout memory mi
t = M>t−1w

i
t
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Memory – simplified DNC model

Memory is a tensor Mt with dimensions (Nmem, 2|z |)
Each step we write vector [zt , (1− γ)

∑
t′>t γ

t′−tzt′ ] to Mt−1

denote mt = [m1
t , ...,m

K
t ] for readout of K read heads

Writing to memory is performed after reading:
vwrt [i ] = δit

v rett = γv rett−1 + (1− γ)vwrt−1

Mt = Mt−1 + vwrt [zt , 0]> + v rett [0, zt ]>

When t > Nmem, select the cell with lowest utility

ut+k [k] = ut [k] +
∑
i

w i
t+1[k]
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Latent space

Prior, MLP:

[ht−1,mt−1] → µpriort , log σpriort

Concatenate all information from this timestep

nt = [et , ht−1,mt−1, µ
prior
t , log σpriort ]

Posterior

[µpostt , log σpostt ] = MLP(nt) + [µpriort , log σpriort ]

zt is a sample from posterior factorized Gaussian
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Loss function

Variational Lower Bound:

log p(o≤t , r≤t) ≥
t∑

τ=0

Eq(z<τ | o<τ ) [ DataTerm−KL ]

DataTerm = Eq(zτ | z<τ ,o≤τ ) [ log p(oτ , rτ | zt) ]

KL = DKL (q(zτ | z<τ , o≤τ || p(zτ | z<τ , a≤τ ))

Where p(oτ , rτ | zt) is a linear combination of 6 decoding losses
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Experiments

The most interesting experiments
1 Goal oriented navigation in a maze (3-7 rooms) (video)
2 Arbitrary Visuomotor Mapping (video)
3 T-maze (video)

Shvechikov Pavel POMDP in RL

https://www.youtube.com/watch?v=YFx-D4eEs5A&feature=youtu.be
https://www.youtube.com/watch?v=IiR_NOomcpk&feature=youtu.be
https://www.youtube.com/watch?v=3iA19h0Vvq0&feature=youtu.be


Thank you!
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