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Loss surfaces of neural networks

• The loss surfaces of DNNs are highly non-convex and depend
on millions of parameters.

• The geometric properties of these loss surfaces are not well
understood.

• Even for simple networks, the number of local optima and
saddle points is large and can grow exponentially in the number
of parameters (Auer et al., 1996; Dauphin et al, 2014).
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Connecting local minima

The loss is high along a line segment connecting two optima
(Goodfellow et al., 2015; Keskar et al., 2017).
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The cross-entropy train loss surface in the plane containing weights of
three independently trained networks (ResNet-164, CIFAR-100).

2



Connecting local minima
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The cross-entropy train loss surface in the planes containing Bezier curve
and polygonal chain connecting the two optima from the previous slide.
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Connection procedure

Notation

• ℒ(𝑤) — DNN loss function (e.g. cross-entropy loss)
• 𝑤̂1, 𝑤̂2 ∈ R|𝑛𝑒𝑡| — sets of weights corresponding to two

local minima

Parametric curve 𝜑𝜃 with parameters 𝜃:

𝜑𝜃 : [0, 1]→ R|𝑛𝑒𝑡|, 𝜑𝜃(0) = 𝑤̂1, 𝜑𝜃(1) = 𝑤̂2

Minimization of the loss along the curve:

ℓ̂(𝜃) =

∫︀
ℒ(𝜑)𝑑𝜑∫︀

𝑑𝜑
=

1∫︀
0

ℒ(𝜑(𝑡))‖𝜑′(𝑡)‖𝑑𝑡
1∫︀
0

‖𝜑′(𝑡)‖𝑑𝑡
→ min

𝜃
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Connection procedure

The curve loss could be represented as an expectation:

ℓ̂(𝜃) =

1∫︁
0

ℒ(𝜑(𝑡))

⎛⎜⎜⎜⎝ ‖𝜑′(𝑡)‖
1∫︀
0

‖𝜑′(𝑠)‖𝑑𝑠

⎞⎟⎟⎟⎠
⏟  ⏞  

𝑞𝜃(𝑡)

𝑑𝑡 = E𝑡∼𝑞𝜃(𝑡)

[︁
ℒ(𝜑𝜃(𝑡))

]︁
→ min

𝜃

+ Stochastic optimization could be applied
– The stochastic gradient w.r.t. 𝜃 is intractable in general

We use simplified curve loss:

ℓ(𝜃) =

∫︁ 1

0
ℒ(𝜑𝜃(𝑡))𝑑𝑡 = E𝑡∼𝑈(0,1)

[︁
ℒ(𝜑𝜃(𝑡))

]︁
→ min

𝜃

∇𝜃ℓ(𝜃) = ∇𝜃E𝑡∼𝑈(0,1)ℒ(𝜑𝜃(𝑡)) = E𝑡∼𝑈(0,1)∇𝜃ℒ(𝜑𝜃(𝑡))
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Example Parameterizations

The trained networks 𝑤̂1 and 𝑤̂2 serve as the endpoints of the curve.

The parameters 𝜃 are trainable parameters of the curve.

Polygonal chain

𝜑𝜃(𝑡) =

{︃
2 (𝑡𝜃 + (0.5− 𝑡)𝑤̂1) , 0 ≤ 𝑡 ≤ 0.5

2 ((𝑡− 0.5)𝑤̂2 + (1− 𝑡)𝜃) , 0.5 ≤ 𝑡 ≤ 1.

Bezier curve

𝜑𝜃(𝑡) = (1 − 𝑡)2𝑤̂1 + 2𝑡(1 − 𝑡)𝜃 + 𝑡2𝑤̂2, 0 ≤ 𝑡 ≤ 1.

Remark: these formulas naturally generalize for 𝑛 bends
𝜃 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}
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Batch normalization

Training phase:

𝑥̂ = 𝛾
𝑥− 𝜇(𝑥)

𝜎(𝑥) + 𝜖
+𝛽

Testing phase:

𝑥̂ = 𝛾
𝑥− ̃︀𝜇̃︀𝜎 + 𝜖

+ 𝛽

• During training for any given 𝑡 and weights 𝑤 = 𝜑(𝑡), we
compute 𝜇(𝑥) and 𝜎(𝑥) over mini-batches as usual.

• During testing for any given 𝑡 and weights 𝑤 = 𝜑(𝑡) we
compute ̃︀𝜇 and ̃︀𝜎 with one additional pass over the data with
the fixed weights, as running averages for such networks are
not collected during training.

7



Trained curves (ResNet-164, CIFAR-100)
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• Top row: Train loss

• Bottom row: Test error,%

• Left col: independent optima

• Middle col: Bezier curve

• Right col: polygonal chain
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Trained curves (VGG-16, CIFAR-10)
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• Top row: Train loss

• Bottom row: Test error,%

• Left col: independent optima

• Middle col: Bezier curve

• Right col: polygonal chain
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Independent similar results

Essentially No Barriers in Neural Network Energy Landscape
(Draxler et al., 2018)

Left: Training loss function surface of DenseNet-40-12 on CIFAR-10 and

the minimum energy path. The plane is spanned by the two minima and

the mean of the nodes of the path. Right: Loss along the linear line

segment between minima, and along found path.
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Curve Ensembling

• For curves with one bend the total number of parameters is
equal to the number of parameters of three independent
networks

• Sample several times 𝑡 ∼ 𝑈 [0, 1] and construct ensemble from
networks with parameters 𝜑𝜃(𝑡).

• The accuracy of such an ensemble is close to accuracy of the
ensemble of three independent networks.

• ResNet-164, CIFAR-100. Three independent networks:
21.01%, ensemble along the curve (50 points): 21.07%
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Diversity of points on a curve

Error of the two-network ensemble (𝑤0, 𝑤𝑡) consisting of 𝑤0 = 𝜑𝜃(0) and
𝑤𝑡 = 𝜑𝜃(𝑡) points on the curve (CIFAR-100, ResNet-164).
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SnapShot Ensembles (SSE) (Huang et al., 2017)

Training an ensemble in time needed for training a single model:

• Use cyclical learning rate schedule
• Collect a snapshot of the network at the end of each cycle
• Form the ensemble of 𝑀 last snapshots 13



Fast Geometric Ensembling (FGE)

Proposed changes:
• smaller LR (0.005 instead of 0.1)
• shorter cycles (4 epochs instead of 30+)
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indicate the times when we save snapshots. 14



SSE and FGE comparison
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Ensemble performance of FGE and SSE as a function of training time
(ResNet-110, CIFAR-100, 𝐵 = 150 epochs).

Crosses represent the performance of separate “snapshot” models, and
diamonds show the performance of the ensembles constructed of all
models available by the given time.
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Experiments

CIFAR-100 CIFAR-10

DNN (Budget) method 1 Budget 2 Budgets 3 Budgets 1 Budget 2 Budgets 3 Budgets

VGG-16 (200)
Ind 27.4 25.28 24.45 6.81 5.89 5.9

SSE 26.4 25.16 24.69 6.5 6.19 5.95

FGE 25.74 24.11 23.54 6.48 5.82 5.66

ResNet-110 (150)
Ind 21.37 19.04 18.59 4.7 4.1 3.77

SSE 20.75 19.28 18.91 4.66 4.37 4.3

FGE 20.16 18.67 18.21 4.55 4.21 3.98

WRN-28-10 (200)
Ind 19.1 17.48 17.01 3.74 3.4 3.31

SSE 17.78 17.3 16.97 3.74 3.54 3.55

FGE 17.73 16.95 16.88 3.64 3.38 3.52

Error rates (%) for different ensembling techniques and training budgets.

Budget is the number of epochs required to train a single model

SSE – SnapShot Ensemble (Huang et al., 2017)

Ind – independent networks

ImageNet ResNet-50: 23.87, FGE (add. 10 epochs): 23.31, SSE: 23.33.
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Weight averaging
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Test error surface for three FGE samples and their average (ResNet-110,
CIFAR-100).
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Stochastic Weight Averaging (SWA)

Run starting from “good enough” model 𝑤̂

Stochastic Weight Averaging

Require: weights 𝑤̂, number of iterations 𝑛,
cycle length 𝑐, LR schedule 𝛼(𝑖)

Ensure: 𝑤SWA

𝑤 ← 𝑤̂ {Initialize weights with 𝑤̂}
𝑤SWA ← 𝑤, 𝑛models ← 1

for 𝑖← 1, 2, . . . , 𝑛 do
𝛼← 𝛼(𝑖) {Calculate LR for the iteration}
𝑤 ← 𝑤 − 𝛼∇ℒ𝑖(𝑤) {Stochastic gradient update}
if mod(𝑖, 𝑐) = 0 then
𝑛models ← 𝑖/𝑐 {Number of models}
𝑤SWA ← 𝑤SWA·𝑛models+𝑤

𝑛models+1 {Update average}
end if

end for

Learning rate:

• Cyclical

• Constant
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SWA and SGD
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Test error and train loss surfaces for SGD and SWA ran from the same
initial point (ResNet-110, CIFAR-100).
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Optima Width

• It has been observed in practice that using large batch SGD
leads to a drop in generalization performance.

• (Keskar et al., 2017) claim that there are different types of
minima: flat minima lead to strong generalization, while sharp
minima generalize poorly.

• At the same time, (Dinh et al., 2017) argue that all the known
definitions of sharpness are unsatisfactory and cannot on their
own explain generalization. 20



Optima Width
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(ResNet-110, CIFAR-100) as a function of a point on a random ray
starting at SWA (blue) and SGD (green). Each line corresponds to a
different random ray. 21



Optima Width (CIFAR-100, ResNet-110)
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𝐿2-regularized cross-entropy train loss and test error as a function of a
point on the line connecting 𝑤SWA and 𝑤SGD.

𝑤(𝑡) = 𝑡𝑤SWA + (1− 𝑡)𝑤SGD
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Optima Width (CIFAR-100, VGG-16)
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point on the line connecting 𝑤SWA and 𝑤SGD.

𝑤(𝑡) = 𝑡𝑤SWA + (1− 𝑡)𝑤SGD
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Connection to Ensembling

Let 𝑓(·) – prediction of DDN parametrized by weights 𝑤.

Assumptions:

1. 𝑓 is a scalar (e.g. the probability for a particular class) and
𝑓 ∈ 𝐶2(𝑤).

2. Points 𝑤𝑖 proposed by FGE are close in the weight space and
concentrated around their average 𝑤SWA = 1

𝑛

∑︀𝑛
𝑖=1 𝑤𝑖.

We denote Δ𝑖 = 𝑤𝑖 − 𝑤SWA. Note that
∑︀𝑛

𝑖=1 Δ𝑖 = 0.

Ensembling the networks 𝑤𝑖 corresponds to averaging the function values

𝑓 =
1

𝑛

𝑛∑︁
𝑖=1

𝑓(𝑤𝑖).

Consider the linearization of 𝑓 at 𝑤SWA.

𝑓(𝑤𝑗) = 𝑓(𝑤SWA) + ⟨∇𝑓(𝑤SWA),Δ𝑗⟩+𝑂(‖Δ𝑗‖2).
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Connection to Ensembling

Estimate the difference between 𝑓 and 𝑓(𝑤SWA)

𝑓 − 𝑓(𝑤SWA) =
1

𝑛

𝑛∑︁
𝑖=1

(︀
⟨∇𝑓(𝑤SWA),Δ𝑖⟩+𝑂(‖Δ𝑖‖2)

)︀
=

⟨
∇𝑓(𝑤SWA),

1

𝑛

𝑛∑︁
𝑖=1

Δ𝑖

⟩
+𝑂(Δ2) = 𝑂(Δ2),

where Δ = max𝑛𝑖=1 ‖Δ𝑖‖.
Note that the difference between the predictions of different perturbed
networks is

𝑓(𝑤𝑖)− 𝑓(𝑤𝑗) = ⟨∇𝑓(𝑤SWA),Δ𝑖 −Δ𝑗⟩+𝑂(Δ2),
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SWA experiments (CIFAR)

Accuracies (%) of SWA, SGD and FGE methods for different training
budgets.

SWA

DNN (Budget) SGD FGE (1 Budget) 1 Budget 1.25 Budgets 1.5 Budgets
CIFAR-100

VGG-16 (200) 72.55± 0.10 74.26 73.91± 0.12 74.17± 0.15 74.27± 0.25

ResNet-110 (150) 78.49± 0.36 79.84 79.77± 0.17 80.18± 0.23 80.35± 0.16

WRN-28-10 (200) 80.82± 0.23 82.27 81.46± 0.23 81.91± 0.27 82.15± 0.27

PyramidNet-272 (300) 83.41± 0.21 – – 83.93± 0.18 84.16± 0.15

CIFAR-10

VGG-16 (200) 93.25± 0.16 93.52 93.59± 0.16 93.70± 0.22 93.64± 0.18

ResNet-110 (150) 95.28± 0.10 95.45 95.56± 0.11 95.77± 0.04 95.83± 0.03

WRN-28-10 (200) 96.18± 0.11 96.36 96.45± 0.11 96.64± 0.08 96.79± 0.05

ShakeShake-2x64d (1800) 96.93± 0.10 – – 97.16± 0.10 97.12± 0.06
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SWA experiments (ImageNet)

Accuracies (%) on ImageNet dataset for SWA and SGD with different
architectures.

SWA
DNN SGD 5 epochs 10 epochs

ResNet-50 76.15 76.83± 0.01 76.97± 0.05

ResNet-152 78.31 78.82± 0.01 78.94± 0.07

DenseNet-161 77.65 78.26± 0.09 78.44± 0.06
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DNN training with a fixed learning rate
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Test error as a function of training epoch for constant (green) and
decaying (blue) learning rate schedules (Wide ResNet-28-10, CIFAR-100).

The red curve corresponds to averaging the points along the trajectory of
SGD with constant learning rate starting at epoch 140.
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Future work

We believe that these insights of geometric properties of DNN loss
surfaces will have valuable implications for deep learning research
directions, including:

• Improving the efficiency, reliability, and accuracy of training

• Creating better ensembles

• Deriving more effective posterior approximation families in
Bayesian deep learning

• Developing efficient stochastic MCMC approaches which could
now jump along bridges between modes, rather than getting
stuck exploring a single mode

• Constructing methods which are more robust to adversarial
attacks
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Links

Papers:

• Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
arxiv.org/abs/1802.10026

• Averaging Weights Leads to Wider Optima and Better Generalization
arxiv.org/abs/1803.05407

Code:

• Stochastic Weight Averaging in PyTorch
github.com/timgaripov/swa
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